1. Britti E., Ros J., Esteras N., Abramov A.Y. Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death. Cell Calcium. 2020;86:102150. https://doi.org/10.1016/j.ceca.2019.102150
2. Choppa P.C., Vojdani A., Tagle C., Andrin R., Magtoto L. Multiplex PCR for the detection of Mycoplasma fermentans, M. hominis and M. penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome. Mol. Cell Probes. 1998;12(5):301-308. https://doi.org/10.1006/mcpr.1998.0186
3. Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 2004;350(13):1353-1356. https://doi.org/10.1056/NEJMsr040330
4. Dawson H.N., Cantillana V., Chen L., Vitek M.P. The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J. Neurosci. 2007;27(34):9155-9168. https://doi.org/10.1523/JNEUROSCI.5492-06.2007
5. D’Souza I., Schellenberg G.D. Arginine/serine-rich protein interaction domain-dependent modulation of a tau exon 10 splicing enhancer: altered interactions and mechanisms for functionally antagonistic FTDP-17 mutations Δ280K and N279K. J. Biol. Chem. 2006;281: 2460-2469. https://doi.org/10.1074/jbc.M505809200
6. Esmaeli-Azad B., McCarty J.H., Feinstein S.C. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J. Cell Sci. 1994; 107(4):869-879. https://doi.org/10.1242/jcs.107.4.869
7. Esteras N., Kundel F., Amodeo G.F., Pavlov E.V., Klenerman D., Abramov A.Y. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2021;288(1):127-141. https://doi.org/10.1111/febs.15340
8. Ghetti B., Oblak A.L., Boeve B.F., Johnson K.A., Dickerson B.C., Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol. Appl. Neurobiol. 2015;41(1):24-46. https://doi.org/10.1111/nan.12213
9. Grigor’eva E.V., Kopytova A.E., Yarkova E.S., Pavlova S.V., Sorogina D.A., Malakhova A.A., Malankhanova T.B., Baydakova G.V., Zakharova E.Y., Medvedev S.P., Pchelina S.N., Zakian S.M. Biochemical characteristics of iPSC-derived dopaminergic neurons from N370S GBA variant carriers with and without Parkinson’s disease. Int. J. Mol. Sci. 2023;24(5):4437. https://doi.org/10.3390/ijms24054437
10. Hasegawa M., Smith M.J., Iijima M., Tabira T., Goedert M. FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett. 1999;443(2):93-96. https://doi.org/10.1016/S0014-5793(98)01696-2
11. Hernández F., Merchán-Rubira J., Vallés-Saiz L., Rodríguez-Matellán A., Avila J. Differences between human and murine tau at the N-terminal end. Front. Aging Neurosci. 2020;12:11. https://doi.org/10.3389/fnagi.2020.00011
12. Iovino M., Agathou S., González-Rueda A., Del Castillo VelascoHerrera M., Borroni B., Alberici A., Lynch T., O’Dowd S., Geti I., Gaffney D., Vallier L., Paulsen O., Káradóttir R.T., Spillantini M.G. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain. 2015;138(11):3345-3359. https://doi.org/10.1093/brain/awv222
13. Korn L., Speicher A.M., Schroeter C.B., Gola L., Kaehne T., Engler A., Disse P., Fernández-Orth J., Csatári J., Naumann M., Seebohm G., Meuth S.G., Schöler H.R., Wiendl H., Kovac S., Pawlowski M. MAPT genotype-dependent mitochondrial aberration and ROS production trigger dysfunction and death in cortical neurons of patients with hereditary FTLD. Redox Biol. 2023;59:102597. https://doi.org/10.1016/j.redox.2022.102597
14. Liu G., David B.T., Trawczynski M., Fessler R.G. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev. Rep. 2020;16(1):3-32. https://doi.org/10.1007/s12015-019-09935-x
15. Lynch T., Sano M., Marder K.S., Bell K.L., Foster N.L., Defendini R.F., Sima A.A., Keohane C., Nygaard T.G., Fahn S., Mayeux R., Rowland L., Wilhelmsen K. Clinical characteristics of a family-with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology. 1994;44(10):1878-1884. https://doi.org/10.1212/wnl.44.10.1878
16. Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458- 466. https://doi.org/10.1002/stem.1293
17. Ritter M.L., Avila J., García-Escudero V., Hernández F., Pérez M. Frontotemporal dementia-associated N279K tau mutation localizes at the nuclear compartment. Front. Cell. Neurosci. 2018;12:202. https://doi.org/10.3389/fncel.2018.00202
18. Valetdinova K.R., Malankhanova T.B., Zakian S.M., Medvedev S.P. The cutting edge of disease modeling: synergy of induced pluripotent stem cell technology and genetically encoded biosensors. Biomedicines. 2021;9(8):960. https://doi.org/10.3390/biomedicines9080960
19. Wren M.C., Zhao J., Liu C.-C., Murray M.E., Atagi Y., Davis M.D., Fu Y., Okano H.J., Ogaki K., Strongosky A.J., Tacik P., Rademakers R., Ross O.A., Dickson D.W., Wszolek Z.K., Kanekiyo T., Bu G. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Mol. Neurodegener. 2015;10:46. https://doi.org/10.1186/s13024-015-0042-7.