Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Generation and characterization of two induced pluripotent stem cell lines (ICGi052-A and ICGi052-B) from a patient with frontotemporal dementia with parkinsonism-17 associated with the pathological variant c.2013T>G in the MAPT gene

https://doi.org/10.18699/vjgb-24-76

Abstract

Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death. Analysis of exome sequencing data from a 46-year-old patient with a clinical diagnosis of Parkinson’s disease revealed the presence of the pathological variant c.2013T>G (rs63750756) in the MAPT gene, which is associated with frontotemporal dementia with parkinsonism-17. By reprogramming the patient’s peripheral blood mononuclear cells, we obtained induced pluripotent stem cells (iPSCs). Two iPSC lines were characterised in detail. Reprogramming was performed by transfection with non-integrating episomal vectors expressing the OCT4, SOX2, KLF4, LIN28, L-MYC and mp53DD proteins. The iPSC lines ICGi052-A and ICGi052-B proliferate stably, form colonies with a morphology characteristic of human pluripotent cells, have a normal diploid karyotype (46,XX), express endogenous alkaline phosphatase and pluripotency markers (OCT4, NANOG, SSEA-4 and TRA-1-60) and are able to differentiate into derivatives of three germ layers: ento-, ecto- and mesoderm. The iPSC lines obtained and characterised in detail in this work represent a unique tool for studying the molecular genetic mechanisms of the pathogenesis of frontotemporal dementia with parkinsonism-17, as well as for testing potential drugs in vitro.

About the Authors

E. V. Grigor’eva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. A. Malakhova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. S. Yarkova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



J. M. Minina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Y. V. Vyatkin
NOVEL Ltd.
Russian Federation

Novosibirsk



J. A. Nadtochy
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



E. A. Khabarova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Federal Neurosurgical Center of the Ministry of Health of the Russian Federation
Russian Federation

Novosibirsk



J. A. Rzaev
Federal Neurosurgical Center of the Ministry of Health of the Russian Federation
Russian Federation

Novosibirsk



S. P. Medvedev
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. M. Zakian
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Britti E., Ros J., Esteras N., Abramov A.Y. Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death. Cell Calcium. 2020;86:102150. DOI 10.1016/j.ceca.2019.102150

2. Choppa P.C., Vojdani A., Tagle C., Andrin R., Magtoto L. Multiplex PCR for the detection of Mycoplasma fermentans, M. hominis and M. penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome. Mol. Cell Probes. 1998;12(5):301-308. DOI 10.1006/mcpr.1998.0186

3. Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 2004;350(13):1353-1356. DOI 10.1056/NEJMsr040330

4. Dawson H.N., Cantillana V., Chen L., Vitek M.P. The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J. Neurosci. 2007;27(34):9155-9168. DOI 10.1523/JNEUROSCI.5492-06.2007

5. D’Souza I., Schellenberg G.D. Arginine/serine-rich protein interaction domain-dependent modulation of a tau exon 10 splicing enhancer: altered interactions and mechanisms for functionally antagonistic FTDP-17 mutations Δ280K and N279K. J. Biol. Chem. 2006;281: 2460-2469. DOI 10.1074/jbc.M505809200

6. Esmaeli-Azad B., McCarty J.H., Feinstein S.C. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J. Cell Sci. 1994; 107(4):869-879. DOI 10.1242/jcs.107.4.869

7. Esteras N., Kundel F., Amodeo G.F., Pavlov E.V., Klenerman D., Abramov A.Y. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2021;288(1):127-141. DOI 10.1111/febs.15340

8. Ghetti B., Oblak A.L., Boeve B.F., Johnson K.A., Dickerson B.C., Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol. Appl. Neurobiol. 2015;41(1):24-46. DOI 10.1111/nan.12213

9. Grigor’eva E.V., Kopytova A.E., Yarkova E.S., Pavlova S.V., Sorogina D.A., Malakhova A.A., Malankhanova T.B., Baydakova G.V., Zakharova E.Y., Medvedev S.P., Pchelina S.N., Zakian S.M. Biochemical characteristics of iPSC-derived dopaminergic neurons from N370S GBA variant carriers with and without Parkinson’s disease. Int. J. Mol. Sci. 2023;24(5):4437. DOI 10.3390/ijms24054437

10. Hasegawa M., Smith M.J., Iijima M., Tabira T., Goedert M. FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett. 1999;443(2):93-96. DOI 10.1016/S0014-5793(98)01696-2

11. Hernández F., Merchán-Rubira J., Vallés-Saiz L., Rodríguez-Matellán A., Avila J. Differences between human and murine tau at the N-terminal end. Front. Aging Neurosci. 2020;12:11. DOI 10.3389/fnagi.2020.00011

12. Iovino M., Agathou S., González-Rueda A., Del Castillo VelascoHerrera M., Borroni B., Alberici A., Lynch T., O’Dowd S., Geti I., Gaffney D., Vallier L., Paulsen O., Káradóttir R.T., Spillantini M.G. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain. 2015;138(11):3345-3359. DOI 10.1093/brain/awv222

13. Korn L., Speicher A.M., Schroeter C.B., Gola L., Kaehne T., Engler A., Disse P., Fernández-Orth J., Csatári J., Naumann M., Seebohm G., Meuth S.G., Schöler H.R., Wiendl H., Kovac S., Pawlowski M. MAPT genotype-dependent mitochondrial aberration and ROS production trigger dysfunction and death in cortical neurons of patients with hereditary FTLD. Redox Biol. 2023;59:102597. DOI 10.1016/j.redox.2022.102597

14. Liu G., David B.T., Trawczynski M., Fessler R.G. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev. Rep. 2020;16(1):3-32. DOI 10.1007/s12015-019-09935-x

15. Lynch T., Sano M., Marder K.S., Bell K.L., Foster N.L., Defendini R.F., Sima A.A., Keohane C., Nygaard T.G., Fahn S., Mayeux R., Rowland L., Wilhelmsen K. Clinical characteristics of a family-with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology. 1994;44(10):1878-1884. DOI 10.1212/wnl.44.10.1878

16. Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458- 466. DOI 10.1002/stem.1293

17. Ritter M.L., Avila J., García-Escudero V., Hernández F., Pérez M. Frontotemporal dementia-associated N279K tau mutation localizes at the nuclear compartment. Front. Cell. Neurosci. 2018;12:202. DOI 10.3389/fncel.2018.00202

18. Valetdinova K.R., Malankhanova T.B., Zakian S.M., Medvedev S.P. The cutting edge of disease modeling: synergy of induced pluripotent stem cell technology and genetically encoded biosensors. Biomedicines. 2021;9(8):960. DOI 10.3390/biomedicines9080960

19. Wren M.C., Zhao J., Liu C.-C., Murray M.E., Atagi Y., Davis M.D., Fu Y., Okano H.J., Ogaki K., Strongosky A.J., Tacik P., Rademakers R., Ross O.A., Dickson D.W., Wszolek Z.K., Kanekiyo T., Bu G. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Mol. Neurodegener. 2015;10:46. DOI 10.1186/s13024-015-0042-7.


Review

Views: 665


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)