1. Andersson M., Turesson H., Nicolia A., Fält A.-S., Samuelsson M., Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017;36:117-128. https://doi.org/10.1007/s00299-016-2062-3.
2. Butler N.M., Baltes N.J., Voytas D.F., Douches D.S. Geminivirusmediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci. 2016;7:1045. https://doi.org/10.3389/fpls.2016.01045.
3. Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016;17:1140-1153. https://doi.org/10.1111/mpp.12375.
4. Feng Z., Zhang B., Ding W., Liu X., Yang D.L., Wei P., Cao F., Zhu S., Zhang F., Mao Y., Zhu J.K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23:1229-1232. https://doi.org/10.1038/cr.2013.11.
5. Gerasimova S.V., Khlestkina E.K., Kochetov A.V., Shumny V.K. Genome editing system CRISPR/CAS9 and peculiarities of its application in monocots. Fiziologiya rasteniy = Plant Physiology (Moscow). 2017;64:92-108. https://doi.org/10.7868/S0015330317010079. (in Russian)
6. Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017. https://doi.org/10.1111/pbi.12677.
7. Khlestkin V.K., Peltek S.E., Kolchanov N.A. Target genes for development of potato (Solanum tuberosum L.) cultivars with desired starch properties (review). Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2017;52(1):25-36. https://doi.org/10.15389/agrobiology.2017.1.25eng. (in Russian)
8. Khlestkina E.K., Shumny V.K. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. Russian Journal of Genetics. 2016;52(7): 676687. https://doi.org/10.7868/S0016675816070055. (in Russian)
9. Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y., Barg R. Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol. J. 2016. https://doi.org/10.1111/pbi.12662.
10. Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., Uauy C., Harwood W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015;16:258. https://doi.org/10.1186/s13059-015-0826-7.
11. Li J., Meng X., Zong Y., Chen K., Zhang H., Liu J., Li J., Gao C. Gene replacements and insertions in rice by intron targeting using CRISPRCas9. Nat. Plant. 2016a;2:16139. https://doi.org/10.1038/nplants.2016.139.
12. Li J.F., Norville J.E., Aach J., McCormack M., Zhang D., Bush J., Church G.M., Sheen J. l. Multiplex and homologous recombinationmediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013;31:688-691. https://doi.org/10.1038/nbt.2654.
13. Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., Li H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci. Frontiers. 2016b;7:377. https://doi.org/10.3389/fpls.2016.0037.
14. Li Q., Zhang D., Chen M., Liang W., Wei J., Qi Y., Yuan Z. Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J. Genet. Genomics. 2016c;43:415-419. https://doi.org/10.1016/j.jgg.2016.04.011.
15. Li Z., Liu Z.-B., Xing A., Moon B.P., Koellhoffer J.P., Huang L., Ward R.T., Clifton E., Falco S.C., Cigan A.M. Cas9-guide RNA Directed genome editing in soybean. Plant Physiol. 2015;169:960-970. https://doi.org/10.1104/pp.15.00783.
16. Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., Gao C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 2017;8:14261. https://doi.org/10.1038/ncomms14261.
17. Lu Y., Zhu J.-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant. 2017. https://doi.org/10.1016/j.molp.2016.11.013.
18. Malnoy M., Viola R., Jung M.-H., Koo O.-J., Kim S., Kim J.-S., Velasco R., Kanchiswamy C.N. DNA-Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Sci. 2016;7:1904. https://doi.org/10.3389/fpls.2016.01904.
19. Nekrasov V., Staskawicz B., Weigel D., Jones J.D., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:691693. https://doi.org/10.1038/nbt.2655.
20. Permiakova M.D., Trufanov V.A., Pshenichnikova T.A., Ermakova M.F. Role of lipoxygenase in the determination of wheat grain quality. Prikl. Biokhim. Mikrobiol. = Applied Biochemistry and Microbiology. 2010;46(1):96-102. (in Russian)
21. Sauer N.J., Narváez-Vásquez J., Mozoruk J., Miller R.B., Warburg Z.J., Woodward M.J., Mihiret Y.A., Lincoln T.A., Segami R.E., Sanders S.L., Walker K.A., Beetham P.R., Schöpke C.R., Gocal G.F. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 2016;170:1917-1928. https://doi.org/10.1104/pp.15.01696.
22. Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.L., Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:686688. https://doi.org/10.1038/nbt.2650.
23. Shen L., Wang C., Fu Y., Wang J., Liu Q., Zhang X., Yan C., Qian Q., Wang K. QTL editing confers opposing yield performance in different rice varieties. J. Integr. Plant Biol. 2016. https://doi.org/10.1111/jipb.12501.
24. Shi J., Gao H., Wang H., Lafitte H.R., Archibald R.L., Yang M., Hakimi S.M., Mo H., Habben J.E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2017;15:207-216. https://doi.org/10.1111/pbi.12603.
25. Soyk S., Müller N.A., Park S.J., Schmalenbach I., Jiang K., Hayama R., Zhang L., Van Eck J., Jiménez-Gómez J.M., Lippman Z.B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 2016;49:162-168. https://doi.org/10.1038/ng.3733.
26. Sun Y., Zhang X., Wu C., He Y., Ma Y., Hou H., Guo X., Du W., Zhao Y., Xia L. Engineering herbicide-resistant rice plants through CRISPR/ Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant. 2016;628-631. https://doi.org/10.1016/j.molp.2016.01.001.
27. Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015; 169:931-945. https://doi.org/10.1104/pp.15.00793.
28. Tang F., Yang S., Liu J., Zhu H. Rj4, a Gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol. 2016;170:26-32. https://doi.org/10.1104/pp.15.01661.
29. Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.G., Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE. 2016;11:e0154027. DOI. 10.1371/journal.pone.0154027.
30. Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014;32:947-951. https://doi.org/10.1038/nbt.2969.
31. Xie K., Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant. 2013;6:1975-1983. https://doi.org/10.1093/mp/sst119.
32. Xu C., Liberatore K.L., MacAlister C.A., Huang Z., Chu Y.-H., Jiang K., Brooks C., Ogawa-Ohnishi M., Xiong G., Pauly M., Van Eck J., Matsubayashi Y., van der Knaap E., Lippman Z.B. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 2015;47:784-792. https://doi.org/10.1038/ng.3309.
33. Xu R., Yang Y., Qin R., Li H., Qiu C., Li L., Wei P., Yang J. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J. Genet. Genomics. 2016; 43:529-532. https://doi.org/10.1016/j.jgg.2016.07.003.
34. Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.-L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016;7:12617. DOI. 10.1038/ncomms12617.
35. Zheng X., Yang S., Zhang D., Zhong Z., Tang X., Deng K., Zhou J., Qi Y., Zhang Y. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep. 2016;35:1545-1554. https://doi.org/10.1007/s00299-016-1967-1.
36. Zhou H., He M., Li J., Chen L., Huang Z., Zheng S., Zhu L., Ni E., Jiang D., Zhao B., Zhuang C. Development of commercial thermosensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci. Rep. 2016;6:37395. https://doi.org/10.1038/srep37395.
37. Zlobin N.E., Ternovoy V.V., Grebenkina N.A., Taranov V.V. Making complex things simpler: modern tools to edit the plant genome. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(1):104-111. https://doi.org/10.18699/VJ17.228. (in Russian)