MEDICAL GENETICS
The structure of diseases in humans is heterogeneous, which is manifested by various combinations of diseases, including comorbidities associated with a common pathogenetic mechanism, as well as diseases that rarely manifest together. Recently, there has been a growing interest in studying the patterns of development of not individual diseases, but entire families associated with common pathogenetic mechanisms and common genes involved in their development. Studies of this problem make it possible to isolate an essential genetic component that controls the formation of disease conglomerates in a complex way through functionally interacting modules of individual genes in gene networks. An analytical review of studies on the problems of various aspects of the combination of diseases is the purpose of this study. The review uses the metaphor of a hermeneutic circle to understand the structure of regular relationships between diseases, and provides a conceptual framework related to the study of multiple diseases in an individual. The existing terminology is considered in relation to them, including multimorbidity, polypathies, comorbidity, conglomerates, families, “second diseases”, syntropy and others. Here we summarize the key results that are extremely useful, primarily for describing the genetic architecture of diseases of a multifactorial nature. Summaries of the research problem of the disease connection phenomenon allow us to approach the systematization and natural classification of diseases. From practical healthcare perspective, the description of the disease connection phenomenon is crucial for expanding the clinician’s interpretive horizon and moving beyond narrow, disease-specific therapeutic decisions.
Epidermolysis bullosa (EB) is an inherited disorder of skin fragility, caused by mutations in a large number of genes associated with skin integrity and dermal-epidermal adhesion. Skin fragility is manifested by a decrease in resistance to external mechanical influences, the clinical signs of which are the formation of blisters, erosions and wounds on the skin and mucous membranes. EB is a multisystemic disease and characterized by a wide phenotypic spectrum with extracutaneous complications in severe types, besides the skin and mucous membranes, with high mortality. More than 30 clinical subtypes have been identified, which are grouped into four main types: simplex EB, junctional EB, dystrophic EB and Kindler syndrome. To date, pathogenic variants in 16 different genes are associated with EB and encode proteins that are part of the skin anchoring structures or are signaling proteins. Genetic mutations cause dysfunction of cellular structures, differentiation, proliferation and apoptosis of cells, leading to mechanical instability of the skin. The formation of reduced proteins or decrease in their level leads mainly to functional disorders, forming mild or intermediate severe phenotypes. Absent protein expression is a result of null genetic variants and leads to structural abnormalities, causing a severe clinical phenotype. For most of the genes involved in the pathogenesis of EB, certain relationships have been established between the type and position of genetic variant and the severity of the clinical manifestations of the disease. Establishing an accurate diagnosis depends on the correlation of clinical, genealogical and immunohistological data in combination with molecular genetic testing. In general, the study of clinical, genetic and ultrastructural changes in EB has significantly expanded the understanding of the natural history of the disease and supplemented the data on genotype-phenotype correlations, promotes the search and study of epigenetic and non-genetic disease modifier factors, and also allows developing approaches to radical treatment of the disease. New advances of sequencing technologies have made it possible to describe new phenotypes and study their genetic and molecular mechanisms. This article describes the pathogenetic aspects and genes that cause main and rare syndromic subtypes of EB.
Miscarriage is an important problem in human reproduction, affecting 10–15 % of clinically recognized pregnancies. The cases of embryonic death can be divided into missed abortion (MA), for which the ultrasound sign of the embryo death is the absence of cardiac activity, and anembryonic pregnancy (AP) without an embryo in the gestational sac. The aim of this study was to compare the frequency of chromosomal abnormalities in extraembryonic tissues detected by conventional cytogenetic analysis of spontaneous abortions depending on the presence or absence of an embryo. This is a retrospective study of 1551 spontaneous abortions analyzed using GTG-banding from 1990 to 2022 (266 cases of AP and 1285 cases of MA). A comparative analysis of the frequency of chromosomal abnormalities and the distribution of karyotype frequencies depending on the presence of an embryo in the gestational sac was carried out. Statistical analysis was performed using a chi-square test with a p < 0.05 significance level. The total frequency of chromosomal abnormalities in the study was 53.6 % (832/1551). The proportion of abnormal karyotypes in the AP and MA groups did not differ significantly and amounted to 57.1 % (152/266) and 52.9 % (680/1285) for AP and MA, respectively (p = 0.209). Sex chromosome aneuploidies and triploidies were significantly less common in the AP group than in the MA group (2.3 % (6/266) vs 6.8 % (88/1285), p = 0.005 and 4.9 % (13/266) vs 8.9 % (114/1285), p = 0.031, respectively). Tetraploidies were registered more frequently in AP compared to MA (12.4 % (33/266) vs. 8.2 % (106/1285), p = 0.031). The sex ratio among abortions with a normal karyotype was 0.54 and 0.74 for AP and MA, respectively. Thus, although the frequencies of some types of chromosomal pathology differ between AP and MA, the total frequency of chromosomal abnormalities in AP is not increased compared to MA, which indicates the need to search for the causes of AP at other levels of the genome organization, including microstructural chromosomal rearrangements, monogenic mutations, imprinting disorders, and epigenetic abnormalities.
POPULATION GENETICS
Tuvans are one of the most compactly living peoples of Southern Siberia, settled mainly in the territory of Tuva. The gene pool of the Tuvans is quite isolated, due to endogamy and a very low frequency of interethnic marriages. The structure of the gene pool of the Tuvans and other Siberian populations was studied using a genomewide panel of autosomal single nucleotide polymorphic markers and Y-chromosome markers. The results of the analysis of the frequencies of autosomal SNPs by various methods, the similarities in the composition of the Y-chromosome haplogroups and YSTR haplotypes show that the gene pool of the Tuvans is very heterogeneous in terms of the composition of genetic components. It includes the ancient autochthonous Yeniseian component, which dominates among the Chulym Turks and Kets, the East Siberian component, which prevails among the Yakuts and Evenks, and the Far Eastern component, the frequency of which is maximum among the Nivkhs and Udeges. Analysis of the composition of IBD-blocks on autosomes shows the maximum genetic relationship of the Tuvans with the Southern Altaians, Khakas and Shors, who were formed during the settlement of the Turkic groups of populations on the territory of the Altai-Sayan region. A very diverse composition of the Tuvan gene pool is shown for various sublines of Y-chromosomal haplogroups, most of which show strong ethnic specificity. Phylogenetic analysis of individual Y-chromosome haplogroups demonstrates the maximum proximity of the gene pool of the Tuvans with the Altaians, Khakas and Shors. Differences in frequencies of Y-chromosome haplogroups between the Todzhans and Tuvans and a change in the frequencies of haplogroups from south to north associated with the East Asian component were found. The majority of the most frequent Y-chromosome haplogroups in the Tuvans demonstrate the founder effect, the formation age of which is fully consistent with the data on their ethnogenesis.
HUMAN POPULATION GENETICS
Khanty are indigenous Siberian people living on the territory of Western Siberia, mainly on the territory of the Khanty-Mansiysk and Yamalo-Nenets Autonomous Okrugs. The present study is aimed at a comprehensive analysis of the structure of the Khanty gene pool and their comparison with other populations of the indigenous population of Southern and Western Siberia. To address the issues of genetic proximity of the Khanty with other indigenous peoples, we performed genotyping of a wide genomic set of autosomal markers using high-density biochips, as well as an expanded set of SNP and STR markers of the Y-chromosome in various ethnic groups: Khakas, Tuvans, Southern Altaians, Siberian Tatars, Chulyms (Turkic language family) and Kets (Yeniseian language family). The structure of the gene pool of the Khanty and other West Siberian and South Siberian populations was studied using a genome-wide panel of autosomal single nucleotide polymorphic markers and Y-chromosome markers. The results of the analysis of autosomal SNPs frequencies by various methods, the similarities in the composition of the Y-chromosome haplogroups and YSTR haplotypes indicate that the Khanty gene pool is quite specific. When analyzing autosomal SNPs, the Ugrian genetic component completely dominates in both samples (up to 99–100 %). The samples of the Khanty showed the maximum match in IBD blocks with each other, with a sample of the Kets, Chulyms, Tuvans, Tomsk Tatars, Khakas, Kachins, and Southern Altaians. The degree of coincidence of IBD blocks between the Khanty, Kets, and Tomsk Tatars is consistent with the results of the distribution of allele frequencies and common genetic components in these populations. According to the composition of the Y-chromosome haplogroups, the two samples of the Khanty differ significantly from each other. A detailed phylogenetic analysis of various Y-chromosome haplogroups made it possible to describe and clarify the differences in the phylogeny and structure of individual ethnospecific sublines, to determine their relationship, traces of population expansion in the Khanty gene pool. Variants of different haplogroups of the Y-chromosome in the Khanty, Khakas and Tuvans go back to their common ancestral lines. The results of a comparative analysis of male samples indicate a close genetic relationship between the Khanty and Nenets, Komi, Udmurts and Kets. The specificity of haplotypes, the discovery of various terminal SNPs confirms that the Khanty did not come into contact with other ethnic groups for a long time, except for the Nenets, which included many Khanty clans.
The gene pool of the indigenous population of Siberia is a unique system for studying population and evolutionary genetic processes, analyzing genetic diversity, and reconstructing the genetic history of populations. High ethnic diversity is a feature of Siberia, as one of the regions of the peripheral settlement of modern human. The vast expanses of this region and the small number of aboriginal populations contributed to the formation of significant territorial and genetic subdivision. About 40 indigenous peoples are settled on the territory of the Siberian historical and ethnographic province. Within the framework of this work, a large-scale population study of the gene pool of the indigenous peoples of Siberia was carried out for the first time at the level of high-density biochips. This makes it possible to fill in a significant gap in the genogeographic picture of the Eurasian population. For this, DNA fragments were analyzed, which had been inherited without recombination by each pair of individuals from their recent common ancestor, that is, segments (blocks) identical by descent (IBD). The distribution of IBD blocks in the populations of Siberia is in good agreement with the geographical proximity of the populations and their linguistic affiliation. Among the Siberian populations, the Chukchi, Koryaks, and Nivkhs form a separate cluster from the main Siberian group, with the Chukchi and Koryaks being more closely related. Separate subclusters of Evenks and Yakuts, Kets and Chulyms are formed within the Siberian cluster. Analysis of SNPs that fell into more IBD segments of the analyzed populations made it possible to compile a list of 5358 genes. According to the calculation results, biological processes enriched with these genes are associated with the detection of a chemical stimulus involved in the sensory perception of smell. Enriched for the genes found, molecular pathways are associated with the metabolism of linoleic, arachidonic, tyrosic acids and by olfactory transduction. At the same time, an analysis of the literature data showed that some of the selected genes, which were found in a larger number of IBD blocks in several populations at once, can play a role in genetic adaptation to environmental factors.
MAINSTREAM TECHNOLOGIES
The genome-wide variant of the chromatin conformation capture technique (Hi-C) is a powerful tool for revealing patterns of genome spatial organization, as well as for understanding the effects of their disturbance on disease development. In addition, Hi-C can be used to detect chromosomal rearrangements, including balanced translocations and inversions. The use of the Hi-C method for the detection of chromosomal rearrangements is becoming more widespread. Modern high-throughput methods of genome analysis can effectively reveal point mutations and unbalanced chromosomal rearrangements. However, their sensitivity for determining translocations and inversions remains rather low. The storage of whole blood samples can affect the amount and integrity of genomic DNA, and it can distort the results of subsequent analyses if the storage was not under proper conditions. The Hi-C method is extremely demanding on the input material. The necessary condition for successfully applying Hi-C and obtaining high-quality data is the preservation of the spatial chromatin organization within the nucleus. The purpose of this study was to determine the optimal storage conditions of blood samples for subsequent Hi-C analysis. We selected 10 different conditions for blood storage and sample processing. For each condition, we prepared and sequenced Hi-C libraries. The quality of the obtained data was compared. As a result of the work, we formulated the requirements for the storage and processing of samples to obtain high-quality Hi-C data. We have established the minimum volume of blood sufficient for conducting Hi-C analysis. In addition, we have identified the most suitable methods for isolation of peripheral blood mononuclear cells and their long-term storage. The main requirement we have formulated is not to freeze whole blood.
EPIGENETICS AND GENE REGULATION
The placenta has a unique hypomethylated genome. Due to this feature of the placenta, there is a potential possibility of using regulatory elements derived from retroviruses and retrotransposons, which are suppressed by DNA methylation in the adult body. In addition, there is an abnormal increase in the level of methylation of the LINE-1 retrotransposon in the chorionic trophoblast in spontaneous abortions with both normal karyotype and aneuploidy on different chromosomes, which may be associated with impaired gene transcription using LINE-1 regulatory elements. To date, 988 genes that can be expressed from alternative LINE-1 promoters have been identified. Using the STRING tool, genes (NUP153 and YWHAB) were selected, the products of which have significant functional relationships with proteins highly expressed in the placenta and involved in trophoblast differentiation. This study aimed to analyze the expression of the NUP153 and YWHAB genes, highly active in the placenta, from canonical and alternative LINE-1 promoters in the germinal part of the placenta of spontaneous and induced abortions. Gene expression analysis was performed using real-time PCR in chorionic villi and extraembryonic mesoderm of induced abortions (n = 10), adult lymphocytes (n = 10), spontaneous abortions with normal karyotype (n = 10), and with the most frequent aneuploidies in the first trimester of pregnancy (trisomy 16 (n = 8) and monosomy X (n = 6)). The LINE-1 methylation index was assessed in the chorionic villi of spontaneous abortions using targeted bisulfite massive parallel sequencing. The level of expression of both genes from canonical promoters was higher in blood lymphocytes than in placental tissues (p < 0.05). However, the expression level of the NUP153 gene from the alternative LINE-1 promoter was 17 times higher in chorionic villi and 23 times higher in extraembryonic mesoderm than in lymphocytes (p < 0.05). The expression level of NUP153 and YWHAB from canonical promoters was higher in the group of spontaneous abortions with monosomy X compared to all other groups (p < 0.05). The LINE-1 methylation index negatively correlated with the level of gene expression from both canonical (NUP153 – R = –0.59, YWHAB – R = –0.52, p < 0.05) and alternative LINE-1 promoters (NUP153 – R = –0.46, YWHAB – R = –0.66, p < 0.05). Thus, the observed increase in the LINE-1 methylation index in the placenta of spontaneous abortions is associated with the level of expression of the NUP153 and YWHAB genes not only from alternative but also from canonical promoters, which can subsequently lead to negative consequences for normal embryogenesis.
In this study we compared methylation levels of 27,578 CpG sites between paired samples of the tumor and surrounding liver tissues with various degrees of damage (fibrosis, cirrhosis) in HCV-induced hepatocellular carcinoma (HCC) patients, as well as between tumor and normal tissue in non-viral HCC patients, using GSE73003 and GSE37988 data from GEODataSets (https://www.ncbi.nlm.nih.gov/). A significantly lower number of differentially methylated sites (DMS) were found between HCC of non-viral etiology and normal liver tissue, as well as between HCC and fibrosis (32 and 40), than between HCC and cirrhosis (2450 and 2304, respectively, according to GSE73003 and GSE37988 datasets). As the pathological changes in the tissue surrounding the tumor progress, the ratio of hyper-/ hypomethylated DMSs in the tumor decreases. Thus, in tumor tissues compared with normal/fibrosis/cirrhosis of the liver, 75/62.5/47.7 % (GSE73003) and 16 % (GSE37988) of CpG sites are hypermethylated, respectively. Persistent hypermethylation of the ZNF154 and ZNF540 genes, as well as CCL20 hypomethylation, were registered in tumor tissue in relation to both liver fibrosis and liver cirrhosis. Protein products of the EDG4, CCL20, GPR109A, and GRM8 genes, whose CpG sites are characterized by changes in DNA methylation level in tumor tissue in the setting of cirrhosis and fibrosis, belong to “Signaling by G-protein-coupled receptors (GPCRs)” category. However, changes in the methylation level of the “driver” genes for oncopathology (АРС, CDKN2B, GSTP1, ELF4, TERT, WT1) are registered in tumor tissue in the setting of liver cirrhosis but not fibrosis. Among the genes hypermethylated in tumor tissue in the setting of liver cirrhosis, the most represented biological pathways are developmental processes, cell-cell signaling, transcription regulation, Wnt-protein binding. Genes hypomethylated in liver tumor tissue in the setting of liver cirrhosis are related to olfactory signal transduction, neuroactive ligand-receptor interaction, keratinization, immune response, inhibition of serine proteases, and zinc metabolism. The genes hypermethylated in the tumor are located at the 7p15.2 locus in the HOXA cluster region, and the hypomethylated CpG sites occupy extended regions of the genome in the gene clusters of olfactory receptors (11p15.4), keratin and keratin-associated proteins (12q13.13, 17q21.2, and 21q22.11), epidermal differentiation complex (1q21.3), and immune system function loci 9p21.3 (IFNA, IFNB1, IFNW1 cluster) and 19q13.41–19q13.42 (KLK, SIGLEC, LILR, KIR clusters). Among the genes of fibrogenesis or DNA repair, cg14143055 (ADAMDEC1) is located in the binding region of the HOX gene family transcription factors (TFs), while cg05921699 (CD79A), cg06196379 (TREM1) and cg10990993 (MLH1) are located in the binding region of the ZNF protein family transcription factor (TF). Thus, the DNA methylation profile in the liver in HCV-induced HCC is unique and differs depending on the degree of surrounding tissue lesion – liver fibrosis or liver cirrhosis.