СЕЛЕКЦИЯ РАСТЕНИЙ НА ПРОДУКТИВНОСТЬ
Wheatgrass (Th. intermedium) has been traditionally used in wheat breeding for obtaining wheat-wheatgrass hybrids and varieties with introgressions of new genes for economically valuable traits. However, in the 1980s in the United States wheatgrass was selected from among perennial plant species as having promise for domestication and the development of dual-purpose varieties for grain (as an alternative to perennial wheat) and hay. The result of this work was the creation of the wheatgrass varieties Kernza (The Land Institute, Kansas) and MN-Clearwater (University of Minnesota, Minnesota). In Omsk State Agrarian University, the variety Sova was developed by mass selection of the most winter-hardy biotypes with their subsequent combination from the population of wheatgrass obtained from The Land Institute. The average grain yield of the variety Sova is 9.2 dt/ha, green mass is 210.0 dt/ ha, and hay is 71.0 dt/ha. Wheatgrass is a crop with a large production potential, beneficial environmental properties, and valuable grain for functional food. Many publications show the advantages of growing the Kernza variety compared to annual crops in reducing groundwater nitrate contamination, increasing soil carbon sequestration, and reducing energy and economic costs. However, breeding programs for domestication of perennial crops are very limited in Russia. This paper presents an overview of main tasks faced by breeders, aimed at enhancing the yield and cultivating wheatgrass efficiency as a perennial grain and fodder crop. To address them, both traditional and modern biotechnological and molecular cytogenetic approaches are used. The most important task is to transfer target genes of Th. intermedium to modern wheat varieties and decrease the level of chromatin carrying undesirable genes of the wild relative. The first consensus map of wheatgrass containing 10,029 markers was obtained, which is important for searching for genes and their introgressions to the wheat genome. The results of research on the nutritional and technological properties of wheatgrass grain for the development of food products as well as the differences in the quality of wheatgrass grain and wheat grain are presented.
Sustainable development of agriculture depends on the provision of quality seeds to the market. Inoculation with plant-growth-promoting rhizobacteria in in vitro culture can be used to improve the growth efficacy and performance of microplants. We examined the effect of in vitro inoculation of microplants of the cultivars Nevsky and Kondor with the strains Azospirillum baldaniorum Sp245 and Ochrobactrum cytisi IPA7.2 separately and in combination. We examined the morphological variables of plant growth in in vitro culture and under ex vitro adaptation conditions; we also investigated the growth and performance of the plants in the greenhouse. The dependence of the inoculation eff icacy on potato genotype, growth stage, and inoculum composition was ascertained throughout the experiment. In vitro, A. baldaniorum Sp245 alone and in combination with O. cytisi IPA7.2 promoted the formation of roots on the microplants of both cultivars and the growth of Nevsky shoots. During plant growth ex vitro, all growth variables of the Nevsky microplants were promoted by O. cytisi IPA7.2 alone and in combination with A. baldaniorum Sp245. In both cultivars grown in the greenhouse, shoot growth was promoted in most inoculation treatments. The survival ability of the Nevsky microplants in the greenhouse increased 1.7-fold under the effect of simultaneous inoculation. Inoculation of microplants with a combination of A. baldaniorum Sp245 and O. cytisi IPA7.2 increased the number of Nevsky minitubers 1.5-fold and the number of Kondor minitubers 3.5-fold. Inoculation with the tested strains can be used to promote the growth of microplants and increase the yield of minitubers in potato seed breeding for the production of healthy planting material.
РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ
Modern life, especially in large cities, exposes people to a high level of noise, high density of population, disrupted sleeping, large amount of excessive and controversial information as well as to other negative factors; all this may cause chronic psycho-emotional stress. The latest publications often use the term “Syndrome of megalopolis”, which means disruption of sleeping, high anxiety, and altered reproductive function. Medical treatment of infertility may also be considered as a stress factor, especially when infertility lasts for years and is aggravated with emotional frustration. Long-lasting distress may worsen health in general and suppress reproductive function, in particular. The review presents the data on the effects of maternal stress on folliculogenesis, especially when assisted reproductive technologies (ARTs) are used. Clinical data are presented alongside data from laboratory animal experiments. Different maternal stress models are taken into account in respect of their inf luence on oocyte maturation and embryo development. The interfering of psycho-emotional stress and reproductive function is the focus of the review. In these situations, exogenous hormones compensate for the stress-related disruption of the hypothalamic-pituitary-gonadal axis. When ARTs are implemented, stress-induced disruption of oogenesis is realized not via a decrease in hypothalamic and pituitary hormones, but by other ways, which involve paracrine mechanisms described in this review. Based on the literature analysis, one may conclude that stress negatively affects oocyte maturation in the ovary and suppresses subsequent embryo development. The role of some ovarian paracrine factors, such as BDNF, GDF-9, HB-EGF, TNF-α, and some others has been elucidated.
ECOLOGICAL GENETICS
Soil microbial communities play a key role in the evolution of the rhizosphere. In addition, proper exploration of these microbial resources represents a promising strategy that guarantees the health and sustainability of all ecosystems connected to the ground. Under the influence of environmental conditions, microbial communities can change compositions in terms of abundance and diversity. Beyond the descriptive level, the current orientation of microbial ecology is to link these structures to the functioning of ecosystems; specifically, to understand the effect of environmental factors on the functional structure of microbial communities in ecosystems. This review focuses on the main interactions between the indigenous soil microflora and the major constituents of the rhizosphere to understand, on the one hand, how microbial biodiversity can improve plant growth and maintain homeostasis of the rhizospheric ecosystem, on the other hand, how the maintenance and enrichment of plant biodiversity can contribute to the conservation of soil microbial diversity; knowing that these microorganisms are also controlled by the abiotic properties of the soil. Overall, understanding the dynamics of the rhizosphere microbiome is essential for developing innovative strategies in the field of protecting and maintaining the proper functioning of the soil ecosystem.
МАТЕРИАЛЫ КОНФЕРЕНЦИИ «МЕХАНИЗМЫ АДАПТАЦИИ МИКРООРГАНИЗМОВ», ИРКУТСК
Bacteria play a key role in biogeochemical cycles in natural and anthropogenic ecosystems. In river ecosystems, bacteria intensively colonize silt sediments. Microorganisms are essential for energy conversion, biogeochemical nutrient cycling, pollutant degradation, and biotransformation of organic matter; therefore, bottom sediments can be a source of metabolically diverse microorganisms, including those with promise for industrial biotechnologies. The aim of this work was to isolate and study pure cultures of microorganisms – producers of industrially important enzymes and decomposers of organic matter – from bottom sediments of the Ob River. Pork fat and diesel fuel were used as substrates to obtain enrichment and pure cultures for selective cultivation of bacteria with lipolytic and hydrocarbon-oxidizing activity. A total of 21 pure cultures were isolated. The phylogenetic position of the obtained bacterial isolates was determined based on the analysis of 16S rRNA gene sequences. The strains isolated on selective media belonged to representatives of the genera Pseudomonas and Aeromonas (Gammaproteobacteria), and the genus Microvirgula (Betaproteobacteria). The ability of strains to grow on culture media containing pork fat, olive oil and diesel fuel was analyzed. The lipolytic activity of the isolates was evidenced by cultivation on a diagnostic medium containing 1 % tributyrin. The phylogenetic and metabolic diversity of the cultivated non-pathogenic bacterial strains with lipolytic and oil-oxidizing activity revealed in the study indicates the biotechnological potential of the isolates. The most promising strains were M. aerodenitrificans sp. LM1 and P. lini sp. KGS5K3, which not only exhibited lipolytic activity on the diagnostic medium with tributyrin in a wide temperature range, but also utilized diesel fuel, pork fat and olive oil.
Nowadays, sliding is the least investigated mode of bacterial motility. Sliding is a process of passive movement on the surface of semi-liquid mediums which was originally described for mycobacteria and other bacterial species deprived of the organelles specialized for movement. Some mycobacteria are able to colonize surfaces, including tissues of macro-organisms, using glycopeptidolipids localized in the cell envelope for this aim. This is a serious problem for effective therapy of mycobacteriosis caused by nontuberculosis mycobacteria. Furthermore, animal tissues contain biogenic polyamines, which can increase tolerance of microorganisms to stresses, including antibiotics, and modulate cell motility. Therefore, studying mutual effects of biogenic polyamines and antibiotics on the expansion of mycobacteria is important for medicine. Mycobacterial strains, including the parent Mycolicibacterium smegmatis mc2 155 and strains containing single (ΔrelMsm) or double (ΔrelMsmΔrelZ) deletions, were used as the objects of this study. The content of glycopeptidolipids was determined using thin layer chromatography. Sliding motility was assessed by measuring the area of the sliding colony. The effectiveness of antibiotics was measured by comparison of the areas of sliding colonies in the presence of comparable concentrations of antibiotics. The polyamines spermidine and spermine had different effects on the sliding of mycobacteria through an increase or decrease in the colony areas. At the same time, polyamines had neither bactericidal nor bacteriostatic effects. The polyamines contained in the medium decreased the bactericidal effects of the antibiotics streptomycin or isoniazid, but enhanced the effects of DMNP, a synthetic analogue of the natural antibiotic erogorgiaene. Rifampicin was the most effective of all antibiotics investigated here. Moreover, we found that glycopeptidolipids are, apparently, not the only regulators of mycobacterial sliding.
In this study, we present the first results on oxidation stress in Lake Baikal phytoplankton and its adaptation to environmental changes under anthropogenic impact. As was shown, the changing of the dominant species of phytoplankton collected from the surface water layer (~0.3 m) took place from February to June 2021. Phytoplankton were collected at a nearshore station (a littoral station at a distance of ~0.01 km from the shoreline, depth to bottom is ~5 m) and an offshore station (a pelagic station at a distance of ~1 km from the shoreline, depth to bottom is ~543 m). In February, dinoflagellates were dominant (~40 %) as well as diatoms (≤33 %) and green algae (≤12 %). Their biomass was 100 mg·m–3. In March, chrysophytes were dominant (up to 50 %) as well as cryptophytes (≤43 %) and dinoflagellates (≤30 %). Their biomass was 160–270 mg·m–3. In April, biomass increased up to 700–3100 mg·m–3 with the dominance of large cell dinoflagellates (up to 99 %), chrysophytes (up to 50 %), and cryptophytes (up to 35 %). By the end of the first decade of May, the percentage of dinoflagellates decreased and that of cryptophytes increased. In the second decade of May, the percentage of diatoms increased up to ~26–38 % but phytoplankton biomass was minimal (13–30 mg·m–3). By June, the percentage of diatoms in the samples reached 44–75 % at 60–550 mg·m–3. The oxidation stress of phytoplankton as a nonspecific adaptive response to a prolonged, intensive, or recurrent effect of a stress factor was estimated from the content of thiobarbituric acid reactive substances (TBARS). The mean content of these substances (markers of the lipid peroxidation) was determined spectrophotometrically. The oxidation stress of phytoplankton was revealed only when diatom algae dominated. It can be explained by adaptation of algae of other classes to the stress factor. The content of the lipid peroxidation markers in the coastal phytoplankton collected close to the settlement of Listvyanka known as a large touristic center was estimated from 100 to 500 μg·g–1 of dry weight of sample. During the period of diatom blooming in 2016 and 2018, oxidation stress of phytoplankton collected near large settlements was found. In phytoplankton from deep-water pelagic stations most remote from settlements, stress was not revealed. Using the method of gas chromatography, we showed a lower (up to 15 %) content of polyunsaturated fatty acids in phytoplankton characterized by stress occurrence. This confirms cell membrane damages. In Lake Baikal surface water, we found a higher content of synthetic anionic surfactants (sodium alkylbenzene sulfonates), which are components of detergents and cause oxidation stress of hydrobionts (up to 30 ± 4 μg·L–1). The presence of these substances in a water ecosystem can result in exhausting of phytoplankton cell resources, homeostasis imbalance, stress, pathological changes, and rearrangements in phytoplankton assemblage.
The physiological and biochemical activity of plant–microbial associations enables them to determine the mobility, bioavailability, and accumulation of heavy metals in plant tissues. These abilities are the basis for the use of plants and their associated microorganisms in the development of approaches that ensure both the prevention of the ingress of toxic metals into food crops and the extraction of pollutants from polluted soils by using phytoremediation technologies. Whether plant–microbial complexes are used successfully depends on the knowledge of how specific organisms interact with heavy metals. We evaluated the effect of copper ions on common wheat (Triticum aestivum L.) inoculated with three plant-growth-promoting rhizobacteria (PGPR) of the genus Azospirillum. We analyzed the growth variables of 14-day-old wheat seedlings, the content of photosynthesis pigments, the activity of plant oxidoreductases, and the accumulation of copper by plant tissues. All strains more or less compensated for copper toxicity to seedling development and increased metal accumulation in roots and shoots. Copper affected the photosynthetic apparatus of the inoculated plants, primarily by decreasing the content of chlorophyll b. An analysis of the activity of plant oxidoreductases (peroxidases and phenoloxidases), which are involved in the physiological responses of plants to pollutant stress, showed strain-specific dependence and a significant effect of copper on the inoculated plants. Overall, the obtained results clearly show that the effect of Azospirillum on the physiological and biochemical status of wheat is diverse. The compensatory effect of bacteria on copper toxicity and the simultaneous increase in metal accumulation in plant tissues can be considered as mutually exclusive crop-production aspects associated with the growing of food plants in heavy-metal-polluted areas.
Cattle are a reservoir of pathogenic and potentially pathogenic Escherichia coli (E. coli) strains, which can pose a threat to human and animal health. The aim of the study was to evaluate the occurrence of 22 virulence-associated genes (VAGs), as well as the prevalence of antimicrobial drug resistance and three different bla-genes among 49 E. coli strains isolated from healthy cattle. The presence of VAGs that are common among diarrheagenic E. coli (DEC) strains and/or extraintestinal pathogenic E. coli (ExPEC) strains was determined by amplifying specific gene sequences by PCR. The following VAGs associated with DEC were found: east1 in 24.5 % of the studied E. coli strains, estI in 10.2 %, ehxA in 8.2 %, stx2 in 6.1 %, eltA in 4.1 %, estII and stx1 in 2.0 % of the studied strains. The prevalence of ExPEC VAGs was: fimH – 91.8 %, afa/draBC – 61.2 %, iutA – 44.9 %, flu – 32.7 %, sfaDE and hlyF – 30.6 %, iroN – 22.4 %, ompT and papC – 20.4 %, kpsMTII and hlyA – 18.4 %, iss – 14.3 %, usp – 2.0 %, cnf1 and iha were not detected among the studied strains. Based on the found co-occurrence of VAGs “classical”, hetero-pathogenic and hybrid-pathogenic E. coli strains were found. E. coli strains isolated from cows had a higher diarrheagenic potential, whereas E. coli strains isolated from calves more frequently contained genes associated with the ExPEC pathotype. Among the studied E. coli strains, 77.6 % were resistant to ampicillin, 49.0 % to tetracycline, 20.4 % to chloramphenicol, 16.3 % to cefoperazone, 16.3 % to ceftriaxone, 16.3 % to aztreonam, 14.3 % to cefepime, 10.2 % to norfloxacin, 10.2 % to ciprofloxacin, 6.1 % to levofloxacin and 2.0 % to gentamicin. All strains were sensitive to meropenem and amikacin. 32.7 % of the studied E. coli strains were found to be multidrug resistant, as they were resistant to at least three groups of antibiotics. With PCR, the blaTEM, blaSHV, and blaCTX-M genes were detected in 100, 31.6, and 26.3 %, respectively, of strains resistant to at least one of the beta-lactam antibiotics. Thus, it was shown that the studied faecal E. coli of healthy cows and calves had a high hetero-pathogenic potential, therefore in the future molecular genetic characterization of these bacteria shall be an important part of the epizootic monitoring.
Pseudomonas aeruginosa is one of the most problematic pathogens in medical institutions, which may be due to the ability of this microorganism to exist in a biofilm, which increases its resistance to antimicrobials, as well as its prevalence and survival ability in the external environment. This work aimed to evaluate the antimicrobial susceptibility of P. aeruginosa strains in planktonic and biofilm forms. We studied 20 strains of P. aeruginosa collected during 2018–2021 by specialists from the Laboratory of Microbiome and Microecology of the Scientific Centre for Family Health and Human Reproduction Problems. The identification of strains was carried out using test systems for differentiating gram-negative non-fermenting bacteria (NEFERMtest 24 Erba Lachema s.r.o., Czech Republic), and confirmed by mass spectrometric analysis and 16S rRNA gene sequencing. Antimicrobial activity was assessed by the degree of inhibition of cell growth in planktonic and biofilm forms (on a flat-bottomed 96-well plastic immunological plate). All clinical isolates of P. aeruginosa were biofilm formers, 47.6 % of the isolates were weak biofilm formers, and 52.4 % of the isolates were moderate biofilm formers. Planktonic cells and the forming biofilm of the tested P. aeruginosa strains were carbapenems-resistant. Biofilm formation was suppressed in more than 90 % of cases by the agents of the cephalosporin and aminoglycoside groups. Antimicrobial susceptibility of P. aeruginosa strains in the formed biofilm was significantly lower (p < 0.05). Carbapenems and cephalosporins did not affect the mature biofilms of the tested P. aeruginosa strains in more than 60 % of cases. Only non-beta-lactam antibiotics (ciprofloxacin and amikacin) suppressed the growth of planktonic cells and destroyed the mature biofilm. The revealed differences in the effect of the tested antimicrobials on the P. aeruginosa strains biofilms correlate with resistance to a number of antibiotics. To prevent biofilm formation in the hospital strains of P. aeruginosa, the use of ceftazidime may be recommended, and antimicrobials such as ciprofloxacin and amikacin may be used to affect mature biofilms of P. aeruginosa.