Preview

Vavilov Journal of Genetics and Breeding

Advanced search
Vol 28, No 2 (2024)
View or download the full issue PDF
https://doi.org/10.18699/vjgb-24-15

MOLECULAR AND CELL BIOLOGY

131-137 457
Abstract

The bantam gene encodes a vital microRNA and has a complex expression pattern in various tissues at different stages of Drosophila development. This microRNA is involved in the control of normal development of the ocu lar and wing imaginal discs, the central nervous system, and also in maintaining the undifferentiated state of stem cells in the ovaries of adult females. At the cellular level, bantam stimulates cell proliferation and prevents apoptosis. The bantam gene is a target of several conserved signaling cascades, in particular, Hippo. At the moment, at least ten proteins are known to directly regulate the expression of this gene in different tissues of Drosophila. In this study, we found that the bantam regulatory region contains motifs characteristic of binding sites for DREF, a transcription factor that regulates the expression of Hippo cascade genes. Using transgenic lines containing a fulllength bantam lethality-rescuing deletion fragment and a fragment with a disrupted DREF binding site, we show that these motifs are functionally significant because their disruption at the bantam locus reduces expression levels in the larvae and ovaries of homozygous flies, which correlates with reduced vitality and fertility. The effect of DREF binding to the promoter region of the bantam gene on its expression level suggests an additional level of complexity in the regulation of expression of this microRNA. A decrease in the number of eggs laid and a shortening of the reproductive period in females when the DREF binding site in the regulatory region of the bantam gene is disrupted suggests that, through bantam, DREF is also involved in the regulation of Drosophila oogenesis.

138-147 722
Abstract

One of the most productive strategies for finding the functions of proteins is to study the consequences of loss of protein function. For this purpose, cells or organisms with a knockout of the gene encoding the protein of interest are obtained. However, many proteins perform important functions and cells or organisms could suddenly lose fitness when the function of a protein is lost. For such proteins, the most productive strategy is to use in ducible protein degradation systems. A system of auxin-dependent protein degradation is often implemented. To use this system, it is sufficient to introduce a transgene encoding a plant-derived auxin-dependent ubiquitin ligase into mammalian cells and insert a sequence encoding a degron domain into the gene of interest. A crucial aspect of development of cell lines engineered for inducible protein depletion is the selection of cell clones with efficient  auxin-dependent degradation of the protein of interest. To select clones induced by depletion of the architectural chromatin proteins RAD21 (a component of the cohesin complex) and SMC2 (a component of the condensin complex), we propose to use the morphology of metaphase chromosomes as a convenient functional test. In this work, we obtained a series of clones of human HAP1 cells carrying the necessary genetic constructs for inducible depletion of RAD21 and SMC2. The degradation efficiency of the protein of interest was assessed by flow cytometry, Western blotting and metaphase chromosome morphology test. Based on our tests, we showed that the clones we established with the SMC2 degron effectively and completely lose protein function when induced by auxin. However, none of the HAP1 clones we created with the RAD21 degron showed complete loss of RAD21 function upon induction of degradation by auxin. In addition, some clones showed evidence of loss of RAD21 function even in the absence of induction. The chromosome morphology test turned out to be a convenient and informative method for clone selection. The results of this test are in good agreement with flow cytometry analysis and Western blotting data.

PLANT GENETICS AND BREEDING

 
148-154 487
Abstract

One of the serious issues in forest breeding is how to reduce the variability level in breeding populations of forest tree species that is a set of selected plus trees. The problem is that variability is jeopardized by the risk of losing the genetic diversity of future artificial forests, as well as emerging inbreeding depression in the seed plus trees progeny. DNA markers are an effective tool to study variability, identify features of the genetic structure and degree of plant differentiation. The research focuses on assessing the level of the genetic diversity and the degree of differentiation of plus trees of various geographic origin with the use of ISSR markers. We used six ISSR primers to study 270 plus trees grown in the Penza region, the Chuvash Republic, the Republic of Tatarstan and the Mari El Republic. The samples of plus trees under study were characterized by different levels of genetic diversity. Two hundred fifteen PCR fragments were identified for six ISSR primers in total, while the number of amplified fragments varied from 186 to 201 in different plus trees samples. The genetic variabil ity varied within the following limits: 95.7–96.9 %, polymorphic loci; 1.96–1.97, the number of alleles per locus; 1.31–1.48, the number of effective alleles per locus: finally, 0.291–0.429, Shannon’s index; 0.205–0.298, the expected heterozygosity. According to the analysis of molecular variance (AMOVA), 82 % of the variability of ISSR markers is typical for the plus tree samples, while only 18 % is variability among the compared groups of trees from different geographical zones. The dendrogram generated by UPGMA showed that the plus trees grown in the Penza region, the Chuvash Republic and the Republic of Tatarstan are similar in term of the genetic structure of plus trees, while the plus gene pool of Scots pine from the Mari El Republic stands alone. The results of the research prove that the level of genetic diversity, the structure of genetic variability, and the nature of differentiation of plus trees are consistent with those previously elicited for natural populations of Scots pine in the Middle and Upper Volga region.

 
155-165 555
Abstract

Climate change is the key challenge to agriculture in the XXI century. Future agricultural techniques in the Russian Federation should involve the optimization of land utilization. This optimization should apply algorithms for smart farming and take into consideration possible climate variations.  Due to timely risk assessment, this approach would increase profitability and production sustainability of agricultural products without extra expenditures. Also, we should ground farming optimization not on available empirical data encompassing limited time intervals (month, year) or human personal evaluations but on the integral analysis of long-term information bodies using artificial intelligence. This article presents the results of a multivariate analysis of meteorological extremes which caused crop failures in Eastern and Western Europe in last 2600 years according to chronicle data and paleoreconstructions as well as reconstructions of heliophysical data for the last 9000 years. This information leads us to the conclusion that the current global warming will last for some time. However, subsequent climate changes may go in any direction. And cooling is more likely than warming; thus, we should be prepared to any scenario. Plant breeding can play a key role in solving food security problems connected with climate changes. Possible measures to adapt plant industry to the ongoing and expected climate changes are discussed. It is concluded that future breeding should be based on the use of highly adapted crops that have already been produced in pre-breeding programs, ready to meet future challenges caused by potential climate change. 

   

PLANT IMMUNITY

 
166-174 498
Abstract

Powdery mildew (Sphaerotheca macularis Mag. (syn. Podosphaera aphanis Wallr.)) is a dangerous disease of strawberry (Fragaria L.). The resistance of strawberry to powdery mildew is controlled polygenically. Several genetic loci with a large contribution to disease resistance have been identified in various strawberry varieties. Diagnostic DNA markers have been developed for QTL 08 To-f. They showed a high level of reliable gene detection in mapping populations. The purpose of this study was assessment of a strawberry genetic collection for resistance to powdery mildew and identification of promising strawberry forms for breeding for resistance to S. macularis. The objects of the study were wild species of the genus Fragaria L., varieties and selected seedlings of strawberry (Fragaria × ananassa Duch.) created in the I.V. Michurin Federal Scientific Center, and strawberry varieties introduced from various ecological and geographical regions. To identify QTL 08 To-f, DNA markers IB535110 and IB533828 were used. Locus 08 To-f was detected in 23.2 % of the analyzed strawberry genotypes, including wild species F. moschata and F. orientalis, strawberry varieties of Russian breeding (Bylinnaya and Sudarushka) and foreign breeding (Florence, Korona, Malwina, Ostara, Polka and Red Gauntlet). The correlation between the presence of markers IB535110 and IB533828 and phenotypic resistance (powdery mildew effect on strawberry plants is absent) was 0.649. The determination coefficient (R2 ) showing the contribution of the studied locus to the manifestation of the trait was 0.421, that is, in 42.1 % of cases resistance was explained by the presence of QTL 08 To-f, and in 57.9 % of cases, by other genetic factors. All strawberry genotypes with locus 08 To-f were characterized by high field resistance to S. macularis in the conditions of Michurinsk, Tambov region. Thus, locus 08 To-f is promising for conferring resistance on local powdery mildew races, and markers IB535110 and IB533828 can be used in marker-assisted breeding programs to create powdery mildewresistant strawberry genotypes.

 
175-184 521
Abstract

Pathogen recognition receptors encoded by R genes play a key role in plant protection. Nowadays, R genes are a basis for breeding many crops, including potato. Many potato R genes have been discovered and found suitable for breeding thanks to the studies of a wide variety of wild potato species. The use of primitive cultivated potato species (PCPS) as representatives of the primary gene pool can also be promising in this respect. PCPS are the closest to the early domesticated forms of potato; therefore, their investigation could help understand the evolution of R genes. The present study was aimed at identifying and analyzing R genes in PCPS listed in the open database of NCBI and Solomics DB. In total, the study involved 27 accessions belonging to three species: Solanum phureja Juz. & Bukasov, S. stenotomum Juz. & Bukasov and S. goniocalyx Juz. & Bukasov Materials for the analysis were the sequencing data for the said three species from the PRJNA394943 and PRJCA006011 projects. An in silico search was carried out for sequences homologous to 26 R genes identified in potato species differing in phylogenetic distance from PCPS, namely nightshade (S. americanum), North- (S. bulbocastanum, S. demissum) and South-American (S. venturii, S. berthaultii) wild potato species, as well as the cultivated potato species S. tuberosum and S. andigenum. Homologs of all investigated protein-coding sequences were discovered in PCPS with a relatively high degree of similarity (85–100 %). Homologs of the Rpi-R3b, Rpi-amr3 and Rpi-ber1 genes have been identified in PCPS for the first time. An analysis of polymorphism of nucleotide and amino acid sequences has been carried out for 15 R genes. The differences in frequencies of substitutions in PCPS have been demonstrated by analysis of R genes, the reference sequences of which have been identified in different species. For all the studied NBS-LRR genes, the proportion of substituted amino acids in the LRR domain exceeds this figure for the NBS domain. The potential prospects of using PCPS as sources of resistance to Verticillium wilt have been shown.

ANIMAL GENETICS

 
185-189 420
Abstract

Juvenile hormone plays a “status quo” role in Drosophila melanogaster larvae, preventing the untimely metamorphosis, and performs a gonadotropic function in imagoes, ensuring the ovaries’ preparedness for vitellogenesis. The decreased level of juvenile hormone results in reproductive disorders in D. melanogaster females including a delay in the oviposition onset and a fertility decrease. Another factor that can affect the insect reproduction is an infection with the maternally inherited symbiotic α-proteobacterium Wolbachia. The present study is devoted to the analysis of the expression of two juvenile hormone metabolism genes encoding enzymes of its synthesis and degradation, juvenile hormone acid O-methyltransferase ( jhamt) and juvenile hormone epoxide hydrase (Jheh1), respectively, in four wild-type D. melanogaster lines, two of them being infected with Wolbachia. Lines w153 and Bi90 were both derived from an individual wild-caught females infected with Wolbachia, while lines w153T and Bi90T were derived from them by tetracycline treatment and are free of infection. Line Bi90 is known to be infected with the Wolbachia strain wMel, and line w153, with the Wolbachia strain wMelPlus belonging to the wMelCS genotype. It was found that infection with either Wolbachia strain does not affect the expression of the studied genes. At the same time, it was shown that the w153 and w153T lines differ from the Bi90 and Bi90T lines by an increased level of the Jheh1 gene expression and do not differ in the jhamt gene expression level.  Analysis of the fertility of these four lines showed that it does not depend on Wolbachia infection either, but differs between lines with different nuclear genotypes: in w153 and w153T, it is significantly lower than in lines Bi90 and Bi90T. The data obtained allow us to reasonably propose that the inter-line D. melanogaster polymorphism in the metabolism of the juvenile hormone is determined by its degradation (not by its synthesis) and correlates with the fertility level.

 
190-197 412
Abstract

High milk yield is associated with reduced longevity in high-producing dairy cattle breeds. Pre-term culling leads to high replacement heifer demand and economic losses for the dairy industry. Selection for this trait is limited because of low heritability and difficulties in phenotype measurement. Telomeres are elements found at the ends of chromosomes, consisting of repetitive DNA sequences, several thousand base pairs in length, coupled with nucleoprotein complexes. Eventually, in humans and most other animals, telomere length reduces with age. When telomeric DNA is truncated to a critical length, cell ageing, cell cycle arrest, and apoptosis are induced. As a result, telomere length can be considered as a predictor of health risks and an individual’s lifespan. The leukocyte telomere length may be used as a proxy phenotype of productive lifespan to improve cattle selection. Our objectives were to assess the effects of breed and breed group (dairy vs. beef) on the leukocyte telomere length and to estimate the effect of cold climate on this trait in Kalmyk cattle populations from the South (Rostov Oblast) and Far North (Republic of Sakha) regions of Russia. The leukocyte telomere lengths were estimated computationally from whole-genome resequencing data. We leveraged data on leukocyte telomere length, sex, and age of 239 animals from 17 cattle breeds. The breed factor had a significant effect on leukocyte telomere length across our sample. There was no difference in leukocyte telomere length between dairy and beef groups. The population factor had a significant effect on leukocyte telomere length in Kalmyk animals. In conclusion, we found that breed, but not breed group (dairy vs. beef), was significantly associated with leukocyte telomere length in cattle. Residence in colder climates was associated with longer leukocyte telomere length in Kalmyk breed cattle.

MEDICAL GENETICS

 
198-203 505
Abstract

In humans, aneuploidy is incompatible with the birth of healthy children and mainly leads to the death of embryos in the early stages of development in the first trimester of pregnancy. Trisomy 16 is the most common aneup loidy among spontaneous abortions of the first trimester of pregnancy. However, the mechanisms leading to the death of embryos with trisomy 16 remain insufficiently investigated. One of these potential mechanisms is abnormal placental development, including aberrant remodeling of spiral arteries. Spiral artery remodeling involves the migration of trophoblast cells into the maternal spiral arteries, replacing their endothelium and remodeling to ensure a stable embryonic nutrition and oxygen supply. This is a complex process which depends on many factors from both the embryo and the mother. We analyzed the methylation level of seven genes (ADORA2B, NPR3, PRDM1, PSG2, PHTLH, SV2C, and TICAM2) involved in placental development in the chorionic villi of spontaneous abortions with trisomy 16 (n = 14), compared with spontaneous abortions with a normal karyotype (n = 31) and the control group of induced abortions (n = 10). To obtain sequencing libraries, targeted amplification of individual gene regions using designed oligonucleot ide primers for bisulfite-converted DNA was used. The analysis was carried out using targeted bisulfite massive parallel sequencing. In the group of spontaneous abortions with trisomy 16, the level of methylation of the PRDM1 and PSG2 genes was significantly increased compared to induced abortions (p = 0.0004 and p = 0.0015, respectively). In the group of spontaneous abortions, there was no increase in the level of methylation of the PRDM1 and PSG2 genes, but the level of methylation of the ADORA2B gene was significantly increased compared to the induced abortions (p = 0.032). The results obtained indicate the potential mechanisms of the pathogenetic effect of trisomy 16 on the placental development with the participation of the studied  genes.

 
204-214 602
Abstract

Recent studies have shown that the bacterial microbiome of the respiratory tract influences the development of lung cancer. Changes in the composition of the microbiome are observed in patients with chronic inflammatory processes. Such microbiome changes may include the occurrence of bacteria that cause oxidative stress and that are capable of causing genome damage in the cells of the host organism directly and indirectly. To date, the composition of the respiratory microbiome in patients with various histological variants of lung cancer has not been studied. In the present study, we determined the taxonomic composition of the sputum microbiome of 52 patients with squamous cell carcinoma of the lung, 52 patients with lung adenocarcinoma and 52 healthy control donors, using next-generation sequencing (NGS) on the V3-V4 region of the bacterial gene encoding 16S rRNA. The sputum microbiomes of patients with different histological types of lung cancer and controls did not show significant differences in terms of the species richness index (Shannon); however, the patients differed from the controls in terms of evenness index (Pielou). The structures of bacterial communities (beta diversity) in the adenocarcinoma and squamous cell carcinoma groups were also similar; however, when analyzed according to the matrix constructed by the Bray–Curtis method, there were differences between patients with squamous cell carcinoma and healthy subjects, but not between those with adenocarcinoma and controls. Using the LEFse method it was possible to identify an increase in the content of Bacillota (Streptococcus and Bacillus) and Actinomycetota (Rothia) in the sputum of patients with squamous cell carcinoma when compared with samples from patients with adenocarcinoma. There were no differences in the content of bacteria between the samples of patients with adenocarcinoma and the control ones. The content of representatives of the genera Streptococcus, Bacillus, Peptostreptococcus (phylum Bacillota), Prevotella, Macellibacteroides (phylum Bacteroidota), Rothia (phylum Actinomycetota) and Actinobacillus (phylum Pseudomonadota) was increased in the microbiome of sputum samples from patients with squamous cell carcinoma, compared with the control. Thus, the sputum bacterial microbiome of patients with different histological types of non-small-cell lung cancer has significant differences. Further research should be devoted to the search for microbiome biomarkers of lung cancer at the level of bacterial species using whole-genome sequencing.

 
215­-227 759
Abstract

Advances in modern healthcare in developed countries make it possible to extend the human lifespan, which is why maintaining active longevity is becoming increasingly important. After the sirtuin (SIRT) protein family was discovered, it started to be considered as a significant regulator of the physiological processes associated with aging. SIRT has deacetylase, deacylase, and ADP­ribosyltransferase activity and modifies a variety of protein substrates, including chromatin components and regulatory proteins. This multifactorial regulatory system affects many processes: cellular metabolism, mitochondrial functions, epigenetic regulation, DNA repair and more. As is expected, the activity of sirtuin proteins affects the manifestation of classic signs of aging in the body, such as cellular senescence, metabolic disorders, mitochondrial dysfunction, genomic instability, and the disruption of epigenetic regulation. Changes in the SIRT activity in human cells can also be considered a marker of aging and are involved in the genesis of various age­dependent disorders. Additionally, experimental data obtained in animal models, as well as data from population genomic studies, suggest a SIRT effect on life expectancy. At the same time, the diversity of sirtuin functions and biochemical substrates makes it extremely complicated to identify cause­and­effect relationships and the direct role of SIRT in controlling the functional state of the body. However, the SIRT influence on the epigenetic regulation of gene expression during the aging process and the development of disorders is one of the most important aspects of maintaining the homeostasis of organs and tissues. The presented review centers on the diversity of SIRT in humans and model animals. In addition to a brief description of the main SIRT enzymatic and biological activity, the review discusses its role in the epigenetic regulation of chromatin structure, including the context of the development of genome instability associated with aging. Studies on the functional connection between SIRT and longevity, as well as its effect on pathological processes associated with aging, such as chronic inflammation, fibrosis, and neuroinflammation, have been critically analyzed.

 
228-238 881
Abstract

Alzheimer’s disease affects an average of 5 % of the population with a significant increase in prevalence with age, suggesting that the same mechanisms that underlie aging may influence this pathology. Investigation of these mechanisms is promising for effective methods of treatment and prevention of the disease. Possible participants in these mechanisms are transposons, which serve as drivers of epigenetic regulation, since they form species-specific distributions of non-coding RNA genes in genomes in evolution. Study of miRNA involvement in Alzheimer’s disease pathogenesis is relevant, since the associations of protein-coding genes (APOE4, ABCA7, BIN1, CLU, CR1, PICALM, TREM2) with the disease revealed as a result of GWAS make it difficult to explain its complex pathogenesis. Specific expression changes of many genes were found in different brain parts of Alzheimer’s patients, which may be due to global regulatory changes under the influence of transposons. Experimental and clinical studies have shown pathological activation of retroelements in Alzheimer’s disease. Our analysis of scientific literature in accordance with MDTE DB revealed 28 miRNAs derived from transposons (17 from LINE, 5 from SINE, 4 from HERV, 2 from DNA transposons), the expression of which specifically changes in this disease (decreases in 17 and increases in 11 microRNA). Expression of 13 out of 28 miRNAs (miR-151a, -192, -211, -28, -31, -320c, -335, -340, -378a, -511, -576, -708, -885) also changes with aging and cancer development, which indicates the presence of possible common pathogenetic mechanisms. Most of these miRNAs originated from LINE retroelements, the pathological activation of which is associated with aging, carcinogenesis, and Alzheimer’s disease, which supports the hypothesis that these three processes are based on the primary dysregulation of transposons that serve as drivers of epigenetic regulation of gene expression in ontogeny.

MAINSTREAM TECHNOLOGIES

 
239-248 643
Abstract

A hallmark of the last decades is an extensive development of genome editing systems and technologies propelling genetic engineering to the next level. Specific and efficient delivery of genome editing tools to target cells is one of the key elements of such technologies. Conventional vectors are not always suitable for this purpose due to a limited cargo volume, risks related to cancer and immune reactions, toxicity, a need for high-purity viral material and quality control, as well as a possibility of integration of the virus into the host genome leading to overexpression of the vector components and safety problems. Therefore, the search for novel approaches to delivering proteins and nucleic acids into cells is a relevant priority. This work reviews abiotic vectors and systems for delivering genome editing tools into target cells, including liposomes and solid lipid particles, other membrane-based vesicles, cell-penetrating peptides, micelles, dendrimers, carbon nanotubes, inorganic, polymer, metal and other nanoparticles. It considers advantages, drawbacks and preferred applications of such systems as well as suitability thereof for the delivery of genome editing systems. A particular emphasis is placed on metal-organic frameworks (MOFs) and their potential in the targeted intracellular delivery of proteins and polynucleotides. It has been concluded that further development of MOF-based vectors and technologies, as well as combining MOFs with other carriers can result in safe and efficient delivery systems, which would be able to circulate in the body for a long time while recognizing target cells and ensuring cell-specific delivery and release of intact cargoes and, thereby, improving the genome editing outcome. 

 
249-257 696
Abstract

Phage display has become an efficient, reliable and popular molecular technique for generating libraries encompassing millions or even billions of clones of divergent peptides or proteins. The method is based on the correspondence between phage genotype and phenotype, which ensures the presentation of recombinant proteins of known amino acid composition on the surface of phage particles. The use of affinity selection allows one to choose variants with affinity for different targets from phage libraries. The implementation of the antibody phage display technique has revolutionized the field of clinical immunology, both for developing tools to diagnose infectious diseases and for producing therapeutic agents. It has also become the basis for efficient and relatively inexpensive methods for studying protein–protein interactions, receptor binding sites, as well as epitope and mimotope identification. The antibody phage display technique involves a number of steps, and the final result depends on their successful implementation. The diversity, whether natural or obtained by combinatorial chemistry, is the basis of any library. The choice of molecular techniques is critical to ensure that this diversity is maintained during the phage library preparation step and during the transformation of E. coli cells. After a helper phage is added to the suspension of transformed E. coli cells, a bacteriophage library is formed, which is a working tool for performing the affinity selection procedure and searching for individual molecules. Despite the apparent simplicity of generating phage antibody libraries, a number of subtleties need to be taken into account. First, there are the features of phage vector preparation. Currently, a large number of phagemid vectors have been developed, and their selection is also of great importance. The key step is preparing competent E. coli cells and the technology of their transformation. The choice of a helper phage and the method used to generate it is also important. This article discusses the key challenges faced by researchers in constructing phage antibody libraries.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)