PLANT GENETICS
Solanum tuberosum L. is the most important non-grain starch crop with a potential yield of 38–48 t/ha and a starch content of 13.2–18.7 %. Potato tubers are stored at a low temperature (2–4 °C) in a state of physiological dormancy. A disadvantage of this type of storage is the degradation of starch and the accumulation of reducing sugars (cold-induced sweetening), including due to an increase in the activity of β-amylases that hydrolyze starch to maltose. In this study, a comparative analysis of the β-amylase (StBAM1, StBAM9) and amylase inhibitor (StAI ) gene expression, as well as starch and reducing sugar content in tubers during long-term low-temperature storage (September, February, April) was performed using potato cultivars Nadezhda, Barin, Krasavchik, Severnoe siyanie and Utro. The β-amylase genes, StBAM9 and one of the two StBAM1 homologs (with the highest degree of homology with AtBAM1), were selected based on phylogenetic analysis data. Evaluation of the expression of these genes and the amylase inhibitor gene showed a tendency to decrease in transcription for all analyzed cultivars. The starch content also significantly decreased during tuber storage. The amount of reducing sugars increased in the September–April period, while in February–April, their content did not change (Krasavchik), decreased (Barin, Severnoe siyanie) or continued to grow (Utro, Nadezhda). It can be assumed that the gene activity of StBAM1 and StBAM9 correlates with the amount of starch (positively) and monosaccharides (negatively). The level of StAI expression, in turn, may be directly dependent on the level of StBAM1 expression. At the same time, there is no relationship between the degree of cultivar predisposition to cold-induced sweetening and the expression profile of the StBAM1, StBAM9, and StAI genes.
The present study was to determine the nature of gene action and combining ability of six quantitative traits related to productivity of five varieties and ten hybrid combinations of durum wheat. Five modern durum wheat varieties were used in diallel crosses as parents. The study includes three F1 and two F2 generations. The experiments were done in a randomized block design in three replications during three years. Significant differences between the genotypes in both generations was found for all the traits. The general combining ability and specific combining ability showed reliability in both generations. Obtained results suggests that breeding schemes should include both types of genetic effects in order to improve productivity components. The ratio of variances showed that general combining ability has a greater influence on the inheritance of plant height, spike length and thousand kernels weight. For productivity tillering capacity, number of spikelets per spike and kernels weight per spike, specific combining ability has a great impact in inheritance. For thousand kernels weight a redetermination of the genetic formula was established in both generations. Durum wheat varieties Deni, Superdur and Progres were found to be the best general combinators for studied productivity elements. The most valuable cross combinations were Deni × Superdur, Superdur × Predel and Progres × Predel. Parental wheat varieties and progenies from these crosses can be used for improving productivity components and for increasing yields in durum wheat breeding programs.
PLANT BREEDING FOR IMMUNITY AND PERFORMANCE
This review surveys the current state of taxonomy, origin, and utilization prospects for naked barley. The cultivated barley Hordeum vulgare L. incorporates the covered and naked barley groups. Naked barleys are divided into six-row naked barley (convar. сoeleste (L.) A. Trof.) and two-row naked barley (convar. nudum (L.) A. Trof.). The groups include botanical varieties differing in the structural features of spikes, awns, floret and spikelet glumes, and the color of kernels. The centers of morphogenesis for naked barley are scrutinized employing archeological and paleoethnobotanical data, and the diversity of its forms. Hypotheses on the centers of its origin are discussed using DNA marker data. The main areas of its cultivation are shown, along with possible reasons for such a predominating or exclusive distribution of naked barley in highland areas. Inheritance of nakedness and mechanisms of its manifestation are considered in the context of new data in genetics. The biochemical composition of barley grain in protein, some essential and nonessential amino acids, β-glucans, vitamins, and antioxidants is described. Naked barley is shown to be a valuable source of unique combinations of soluble and insoluble dietary fibers and polysaccharides. The parameters limiting wider distribution of naked barley over the world are emphasized, and breeding efforts that could mitigate them are proposed. Pathogen-resistant naked barley accessions are identified to serve as promising sources for increasing grain yield and quality. Main stages and trends of naked barley breeding are considered and the importance of the VIR global germplasm collection as the richest repository of genetic material for the development of breeding is shown.
The 7DL-7Ae#1L·7Ae#1S translocation with the Lr29 gene attracts the attention of bread wheat breeders by its effectiveness against Puccinia triticina. However, its impact on useful agronomic traits has been little studied. In this report, the prebreeding value of 7DL-7Ae#1L·7Ae#1S was studied in analogue lines (ALs) of spring bread wheat cultivars Saratovskaya 68 and Saratovskaya 70 during 2019–2021. The presence of the Lr29 gene was conf irmed by using molecular marker Lr29F24. The ALs with the Lr29 gene were highly resistant to P. triticina against a natural epiphytotics background and in laboratory conditions. 7DL-7Ae#1L·7Ae#1S in Saratovskaya 68 ALs reduced grain productivity in all years of research. On average, the decrease was 35 and 42 %, or in absolute f igures 1163 and 1039 against 1802 kg/ha in the cultivar-recipient. In Saratovskaya 70 ALs, there was a decrease in grain yield in 2019 and 2020, and there were no differences in 2021. On average, the decrease was 18 and 32 %, or in absolute f igures 1101 and 912 against 1342 kg/ha in the cultivar-recipient. The analogues of both cultivars showed a signif icant decrease in the weight of 1000 grains, which ranged from 14 to 20 % for Saratovskaya 68 and 17–18 % for Saratovskaya 70. An increase in the period of germination-earing was noted only in Saratovskaya 68 lines, which averaged 1.3 days. ALs of Saratovskaya 70 had no differences in this trait. 7DL-7Ae#1L·7Ae#1S did not affect plant height and lodging resistance in all ALs. Studies of the bread-making quality in lines with 7DL-7Ae#1L·7Ae#1S revealed a signif icant increase in grain protein and gluten content. As for the effect on the alveograph indicators, there were differences between ALs of both cultivars. While Saratovskaya 68 ALs had a decrease in elasticity and in the ratio of dough tenacity to the extensibility, Saratovskaya 70 lines had an increase in these indicators. All lines increased the f lour strength and the loaves volume, but while Saratovskaya 68 ALs had an increased porosity rating, Saratovskaya 70 ALs had the same rating as the recipient.
The genus Xanthomonas comprises phytopathogenic bacteria which infect about 400 host species, including a wide variety of economically important plants. Xanthomonas oryzae pv. oryzicola (Fang et al., 1957) Swings et al., 1990 is the causal agent of bacterial leaf streak (BLS) being one of the most destructive bacterial diseases of rice. BLS symptoms are very similar to those of bacterial blight caused by closely related Xanthomonas oryzae pv. oryzae. X. o. pv. oryzae and X. o. pv. oryzicola and often occur in rice f ields simultaneously, so separate leaves may show symptoms of both diseases. The quarantine status and high severity of the pathogen require a highly eff icient, fast and precise diagnostic method. We have developed an assay for Xanthomonas oryzae pv. oryzicola detection using real-time polymerase chain reaction (qPCR) and PCR amplicon sequencing. The DNA samples of X. o. pv. oryzae and X. o. pv. oryzicola were obtained from the collection of CIRM-CFBR (France). To evaluate the analytical sensitivity of the assay, a vector construct based on the pAL2-T plasmid was created through the insertion of X. o. pv. oryzicola target fragment (290 bp). Primers and a probe for qPCR were selected for the hpa1 gene site. They allowed identifying all the strains the sequences of which had been loaded in the GenBank NCBI Nucleotide database before November 11, 2021. The SeqX.o.all sequencing primers were selected for the hrp gene cluster sequence, namely for the nucleotide sequence encoding the Hpa1 protein, the sequencing of which allows for eff icient differentiation of X. oryzae species. The analytical specif icity of the system was tested using the DNAs of 53 closely related and accompanying microorganisms and comprised 100 % with no false-positive or false-negative results registered. The system’s analytical sensitivity was not less than 25 copies per PCR reaction. Its eff icacy has been conf irmed using f ive different qPCR detection systems from different manufacturers, so it can be recommended for diagnostic and screening studies.
MICROBIAL GENETICS
Symbiotic bacteria of the genus Wolbachia are widespread in Drosophila melanogaster populations. Based on the polymorphism of the Wolbachia genome, the symbionts’ diversity in D. melanogaster is presented by two groups: MEL (wMel, wMel2, wMel3 and wMel4) and CS (wMelCS and wMelCS2). The wMel genotype is predominant in natural D. melanogaster populations and is distributed all over the world. The CS genotypes, on the other hand, are of particular interest because it is unclear how they are maintained in the fruit f ly populations since they should have been eliminated from them due to their low frequency and genetic drift or been replaced by the wMel genotype. However, this is not what is really observed, which means these genotypes are supported by selection. It is known that the wMelPlus strain of the wMelCS genotype can increase the lifespan of infected f lies at high temperatures. The same genotype also increases the intensity of dopamine metabolism in Drosophila compared to the MEL-group genotypes. In the present study, we searched for the rare Wolbachia wMelCS and wMelCS2 genotypes, as well as for new genotypes in wild-type D. melanogaster strains and in several mutant laboratory strains. The symbiont was found in all populations, in 200 out of 385 wild-type strains and in 83 out of 170 mutant strains. Wolbachia diversity in D. melanogaster wild-type strains was represented by the wMel, wMelCS and wMelCS2 genotypes. More than 90 % of the infected strains carried wMel; 9 %, wMelCS2; and only two strains were found to carry wMelCS. No new Wolbachia genotypes were found. The northernmost point reported for the wMelCS2 genotype was Izhevsk city (Udmurtia, Russia). For the f irst time the wMelCS2 genotype was detected in D. melanogaster from the Sakhalin Island, and wMelCS, in the f lies from Nalchik (the North Caucasus). A comparison of Wolbachia genetic diversity between the wild-type laboratory strains and previously obtained data on mutant laboratory strains demonstrated differences in the frequencies of rare CS genotypes, which were more prevalent in mutant strains, apparently due to the breeding history of these Drosophila strains.
Bacillus anthracis is the anthrax causative agent. For its epidemiology, it is important not only to identify the etiological agent but also to determine the patterns of its evolution and spread. Modern methods of molecular biology make it possible to detect a number of genetic markers suitable for indicating and differentiating the strains of B. anthracis, including the loci arranged as variable number tandem repeats (VNTRs) and SNPs, one nucleotide-sized differences in the DNA sequence of the loci being compared. The objective of the present study was to examine the effectiveness of SNP analysis and PCR amplif ication of VNTR loci combined with the high-resolution amplicon melting analysis for identif ication and differentiation of the anthrax agent strains. In the study, seven strains of B. anthracis obtained from soil samples and animal carcasses were investigated using vaccine strain STI-1 as a reference. For molecular genetic characterization of these bacteria, analysis of 12 SNPs and variability analysis of eight VNTR loci were carried out. To detect the differences between the strains, their PCR product melting points were measured in the presence of the EvaGreen (Sintol, Russia) intercalating dye. For SNP detection, a PCR assay with double TaqMan probes was applied. It was found that the studied virulent strains, except for B. anthracis No. 1 and 3, could not be attributed to any phylogenetic subgroup of the anthrax agents. The proposed method made it possible to differentiate four out of the seven investigated strains. Strains No. 5–7 had identical SNP and HRM prof iles and, as a result, formed a single cluster. Our investigation has conf irmed that the proposed method can be successfully used for preliminary analysis of an epizootic situation in the case of anthrax.
The genus Rhodococcus includes polymorphic non-spore-forming gram-positive bacteria belonging to the class Actinobacteria. Together with Mycobacterium and Corynebacterium, Rhodococcus belongs to the Mycolata group. Due to their relatively high growth rate and ability to form biof ilms, Rhodococcus are a convenient model for studying the effect of biologically active compounds on pathogenic Mycolata. Colchicine was previously found to reduce biof ilm formation by P. carotovorum VKM B-1247 and R. qingshengii VKM Ac-2784D. To understand the mechanism of action of this alkaloid on the bacterial cell, we have studied the change in the fatty acid composition and microviscosity of the R. qingshengii VKM Ac-2784D membrane. Nystatin, which is known to reduce membrane microviscosity, is used as a positive control. It has been found that colchicine at concentrations of 0.01 and 0.03 g/l and nystatin (0.03 g/l) have no signif icant effect on the survival of R. qingshengii VKM Ac-2784D cultivated in a buffered saline solution with 0.5 % glucose (GBSS). However, colchicine (0.03 g/l) signif icantly inhibits biof ilm formation. Rhodococcus cells cultivated for 24 hours in GBSS with colchicine acquire a rounded shape. Colchicine at 0.01 g/l concentration increases C16:1(n-7), C17:0, C20:1(n-9) and C21:0 fatty acids. The microviscosity of the membrane of individual cells was distributed from the lowest to the highest values of the generalized laurdan f luorescence polarization index (GP), which indicates a variety of adaptive responses to this alkaloid. At a higher concentration of colchicine (0.03 g/l) in the membranes of R. qingshengii VKM Ac-2784D cells, the content of saturated fatty acids increases and the content of branched fatty acids decreases. This contributes to an increase in membrane microviscosity, which is conf irmed by the data on the GP fluorescence of laurdan. All of the above indicates that colchicine induces a rearrangement of the Rhodococcus cell membrane, probably in the direction of increasing its microviscosity. This may be one of the reasons for the negative effect of colchicine on the formation of R. qingshengii VKM Ac-2784D biof ilms.
Alkanmonooxygenase enzymes AlkB and Cyp153 are responsible for the aerobic degradation of n-alkanes of petroleum and petroleum products. To prove the usage of n-alkanes from oil and petroleum products by hydrocarbon- oxidizing bacteria isolated from aviation kerosene TS-1 and automobile gasoline AI-95, the detection of the key genes alkB, Alk1, Alk2, Alk3 and Cyp153 encoding alkanmonooxygenases AlkB and Cyp153 (responsible for the oxidation of hydrocarbons with a certain chain length) was carried out. It was found that bacterial strains isolated from TS-1 jet fuel, except Deinococcus sp. Bi7, had at least one of the studied n-alkane degradation genes. The strains Sphingobacterium multivorum Bi2; Alcaligenes faecalis Bi3; Rhodococcus sp. Bi4; Sphingobacterium sp. Bi5; Rhodococcus erythropolis Bi6 contained the alkB gene. In the strains of hydrocarbon-oxidizing bacteria isolated from gasoline AI- 95, this alkanmonooxygenase gene was not detected. Using the real-time PCR method, the activity of the alkB gene in all bacterial strains isolated from petroleum products was analyzed and the number of its copies was determined. By real-time PCR using a primer with a different sequence of nucleotides to detect the alkB gene, its activity was established in all bacterial strains isolated from gasoline AI-95; besides, the strain Paenibacillus agaridevorans Bi11 was assigned to the group with a high level of its activity (1290 copies/ml). According to the assessment of the growth of isolated hydrocarbon-oxidizing bacteria on a solid Evans mineral medium with the addition of the model mixture of hydrocarbons, the strains were divided into three groups. The distributions of strains of hydrocarbon-oxidizing bacteria in the groups based on the activity of the alkB gene and groups formed based on the growth ability and use of the model mixture of hydrocarbons and petroleum products were found to be consistent. The results obtained indicate that we need to use a complex of molecular and physiological methods for a comprehensive analysis of the distribution of the studied genes in bacteria and to assess their activity in the strains of hydrocarbon-oxidizing bacteria capable of biodegradation of petroleum hydrocarbons.
ГЕНЕТИЧЕСКИЕ КОЛЛЕКЦИИ
Corn is one of the main crops of modern world agriculture. It ranks f irst in terms of gross grain harvests and second in terms of acreage, ceding only to the main grain crop of the globe, wheat. The problem of increasing the production of grain and green mass of corn remains one of the urgent tasks of agricultural production. High potential yields very often remain untapped due to diseases, direct losses from which are estimated at 20–50 %. The purpose of this work was to study the species composition of micromycetes on corn collected in different phases of vegetation in May-July 2020 in the Voronezh region, to identify phytopathogenic genus Fusarium fungi, to study pathogenic and phytotoxic strains of the fungi to replenish the collection of the All-Russian Scientific Research Institute of a Phytopathology. Preservation of infectious material of fungi from the genus Fusarium is of no small importance for phytopathological, immunological, breeding, genetic and toxicological studies. As a result of the mycological studies carried out, a lot of fungi isolates from the genera Fusarium, Aspergillus, Cladosporium, Curvularia, Penicillium, Rhizopus, Periconia, Pythium, Trichothecium, etc., isolated from the affected roots, stems and ears of corn in the Voronezh region in 2020 were identif ied. Fungi isolates from seven taxonomic groups: Fusarium fujikuroi Nirenberg (F. moniliforme, F. verticillioides), Fusarium oxysporum Schltdl., Fusarium culmorum (Wm.G. Sm.) Sacc., Fusarium graminearum Schwabe, Fusarium heterosporum Nees & T. Nees (F. lolii ), Fusarium roseum Link (F. sambucinum), Fusarium sporotrichioides Sherb. were tested for pathogenicity and phytotoxicity on seedlings of plant-testers. It has been shown that pathogenic and phytotoxic activity in fungi varies signif icantly between Fusarium species and within the same species. The greatest danger to corn is represented by the species F. sporotrichioides, F. graminearum, F. culmorum, F. fujikuroi, F. oxysporum, F. heterosporum, which have a high intensity of phytotoxic activity associated with the fact that they contribute to the synthesis and accumulation of dangerous toxins in plant tissues. As a result of the conducted studies, 55 strains of fungi from the genus Fusarium belonging to seven species were selected. The isolates, stable in morphological and cultural characteristics and studied for pathogenicity and toxicity, were placed for long-term storage in the Russian State Collection of Plant Pathogenic Microorganisms and Cultivars for Identif ication of Phytopathogenic Microbial Strains at the All-Russian Scientif ic Research Institute of a Phytopathology.