Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Оригинальный русский текст: https://vavilovj-icg.ru/2019-year/23-3/

 

 

Vol 23, No 3 (2019)
View or download the full issue PDF (Russian)
 
255 381
Abstract
From the Editor.

Molecular genetics

 
256-261 743
Abstract

Currently, a therapeutic drug based on recombinant antibodies for the prevention and treatment of tick-borne encephalitis virus (TBEV) is developed in ICBFM SB RAS, and the chimeric antibody ch14D5 is considered as one of the key components of this drug. It was previously shown that this antibody is directed to the domain D3 of the glycoprotein E of TBEV. It was previously shown that this antibody is able to protect mice from the European subtype of TBEV, strain “Absettarov”, and the presence of virus-neutralizing activity against the Far Eastern subtype of TBEV, strain 205 was also shown for this antibody. However, it remains unclear whether this antibody exhibits selectivity for different subtypes of TBEV. The aim of this study was to investigate the effect of amino acid sequence differences of recombinant D3 domains derived from the glycoprotein E of TBEV of the Far Eastern, Siberian and European subtypes on the binding of the protective antibody ch14D5 to these proteins. Using Western blot analysis and surface plasmon resonance, it was shown that ch14D5 antibody has the highest affinity (KD= 1.7±0.5 nM) for the D3 domain of the TBEV of the “Sofjin-Ru” strain belonging to the Far Eastern subtype of the virus. At the same time, the affinity of ch14D5 antibody for similar D3 proteins derived from “Zausaev”, “1528-99” and “Absettarov” strains of the Siberian and European subtypes of TBEV was noticeably lower (KD= 25±4, 300±50, 250±50 nM, respectively). In addition, information about the spatial arrangement of amino acid residues that are different for the studied recombinant proteins indicates that the epitope recognized by the ch14D5 antibody is in close proximity to the lateral ridge of D3 domain of E glycoprotein.

 
262-269 873
Abstract

Molecular typing of BLV samples isolated from Holsteinized Russian Black Pied cattle was carried out, and various cytofluorometric and morphological blood indices were examined. We performed the total count of white blood cells (WBC), lymphocyte (lymf), granulocyte (gran), monocyte (mon), red blood cell (RBC), hemoglobin (HGB), hematocrit (HTC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW), platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and platelet crit count (PCT). The LTR-region of BLV was haplotyped. Only viruses of haplotypes I (0.33±0.03) and III (0.67±0.03) of the eight possible were detected. The ratio of hematologically sick, healthy, and suspected carriers of BLV of haplotypes I and II was comparable with the results of other researchers. The numbers of leukocytes, erythrocytes and platelets in the blood of carriers of haplotype III exceeded the corresponding parameters of cattle affected by the virus of haplotype I. It is interesting to note that the difference in the hemolytic status of animals was manifested not only by the concentration of leukocytes as direct immune agents but also by the count of erythrocytes and platelets, which are not directly involved in the immune response. The number of particles of haplotype III of the BLV circulating in the blood of infected individuals exceeded that of the carriers of haplotype I. In this connection, an assumption was made about the evolutionary advantage of the more virulent haplotype III. However, the results of our own research in conjunction with the data of other scientists indicate that the high virulence of individual virus strains is a consequence of the tendency to implement the maximum possible intensity of the synthesis of virus particles but not of the high damaging effect alone. It is shown that high lethality is evolutionarily disadvantageous for viruses, since the extinction of the carrier as a biological species is fraught with the disappearance of the virus itself.

Plant genetics

 
270-280 1789
Abstract

L-ascorbic acid (vitamin C) is a plant secondary metabolite that has a variety of functions both in plant tissues and in the human body. Plants are the main source of vitamin C in human nutrition, especially citrus, rose hip, tomato, strawberry, pepper, papaya, kiwi, and currant fruits. However, in spite of the biological significance of L-ascorbic acid, the pathways of its biosynthesis in plants were fully understood only in 2007 by the example of a model plant Arabidopsis thaliana. In the present review, the main biosynthetic pathways of vitamin C are described: the L-galactose pathway, L-gulose pathway, galacturonic and myo-inositol pathway. To date, the best studied is the L-galactose pathway (Smyrnoff–Wheeler pathway). Only for this pathway all the enzymes and the entire cascade of reactions have been described. For other pathways, only hypothetical metabolites are proposed and not all the catalyzing enzymes have been identified. The key genes participating in ascorbic acid biosynthesis and accumulation in fleshy fruits are highlighted. Among them are L-galactose pathway proteins (GDP-mannose phosphorylase (GMP, VTC1), GDP-D-mannose epimerase (GME), GDP-L-galactose phosphorylase (GGP, VTC2/VTC5), L-galactose-1-phosphate phosphatase (GPP/VTC4), L-galactose-1-dehydrogenase (GalDH), and L-galactono1,4-lactone dehydrogenase (GalLDH)); D-galacturonic pathway enzymes (NADPH-dependent D-galacturonate reductase (GalUR)); and proteins, controlling the recycling of ascorbic acid (dehydroascorbate reductase (DHAR1) and monodehydroascorbate reductase (MDHAR)). Until now, there is no clear and unequivocal evidence for the existence of one predominant pathway of vitamin C biosynthesis in fleshy fruits. For example, the L-galactose pathway is predominant in peach and kiwi fruits, whereas the D-galacturonic pathway seems to be the most essential in grape and strawberry fruits. However, in some plants, such as citrus and tomato fruits, there is a switch between different pathways during ripening. It is noted that the final ascorbic acid content in fruits depends not only on biosynthesis but also on the rate of its oxidation and recirculation.

PLANT GENETICS

281-286 998
Abstract

Cryopreservation provides long-term storage of the gene pool of potato varieties in cryobanks at extremely low temperatures. Currently, droplet vitrification is the most widely used method for cryopreservation of potato varieties, which is constantly improving to increase the regeneration rates of the stored plant material. Different modifications of this method are used in the world’s leading potato genebanks. This paper presents the results of studying the effect of cultivation conditions after plunging into liquid nitrogen and thawing of shoots tips and axillary buds of in vitro plants on their postcryogenic recovery. The droplet-vitrification method modified at VIR was used for cryopreservation. The factor “prolonged dark incubation of explants” did not have a significant effect on the frequency of post-cryogenic regeneration of the studied varieties except for one variety (Krepysh), for which a significant increase in the regeneration rate was observed for the shoot tips cultivated in the darkness compared to the cultivation under the photoperiod 16/8 hours (light/darkness). The frequency of post-cryogenic regeneration of shoot tips was higher than that of the axillary buds for all varieties; however, these differences were significant (p < 0.05) only in two cases: for the variety Udacha (a photoperiod of 16/8 hours) and for the variety Krepysh (the dark incubation). The results of two-factor analysis of variance indicate that there is no effect of interaction of factor 1 (prolonged dark incubation) and factor 2 (explant type) on the ability of varieties to post-cryogenic recovery. Taking into account the obtained results, the further cryopreservation of an extended subset of 9 varieties was carried out using shoot tips, which, after freezing-thawing, were cultivated under the photoperiod of 16/8 hours. The frequency of post-cryogenic regeneration of these varieties varied from 30 to 60 %. A significant effect of genotype on postcryogenic recovery has been established. The ability of varieties to regenerate shoots after freezing and thawing was not related to the values of morphogenic indices of in vitro plants. The age of the meriklons (2–4 years) did not significantly affect either the morphogenic indices or the frequency of post-cryogenic regeneration.

287-295 994
Abstract

Nuclear ribosomal internal transcribed spacer (ITS) sequences were sequenced for 23 species and subspecies of Elymus sensu lato collected in Russia. The Neighbor-Net analysis of ITS sequences suggested that there are four ribotypes called Core Northern St-rDNA, Core Southern St-rDNA, Northern dahuricus St-rDNA and Southern dahuricus St-rDNA. The Core Southern variant of St-rDNA is closely related to rDNA of diploid Pseudoroegneria stipifolia (PI 313960) and P. spicata (PI 547161). The Core Northern St-rDNA is closely related to rDNA of P. cognata (PI 531720), a diploid species of Kyrgyzstan carrying StY variant of the St genome. The Core Northern St-rDNA is widespread among the Elymus species of Siberia and the Far East, including Yakutia and Chukotka. The Core Southern St-ribotype is typical of southern Elymus and Pseudoroegneria of the South Caucasus, Primorye, Pakistan, and South Korea. The Northern dahuricus St-ribotype and Southern dahuricus St-ribotype are derivatives of the Core Northern and Core Southern St-ribotypes, correspondingly. Both of them were found in all four studied species of the E. dahuricus aggregate: E. dahuricus Turcz. ex Griseb., E. franchetii Kitag., E. excelsus Turcz. ex Griseb. and Himalayan E. tangutorum (Nevski) Hand.-Mazz. In other words, there are at least two population groups (two races) of the Elymus dahuricus aggregate species that consistently differ in their ITS-sequences in Siberia, the Far East and Northern China. Each contains all morphological forms, which taxonomists now attribute either to different species of E. dahuricus aggr. (E. dahuricus sensu stricto, E. franchetii, E. tangutorum, E. excelsus) or subspecies of Campeiostachys dahurica (Turcz. ex Griseb.) B.R. Baum, J.L. Yang et C.C. Yen. At the moment it is unknown if there are any morphological differences between plants carrying either Northern or Southern dahuricus rDNA. Probably, they are cryptic species, but it is certain that if differences in morphology between the two races exist, they are not associated with signs that are now considered taxonomically significant and are used to separate E. dahuricus s. s., E. franchetii, E. tangutorum, and E. excelsus.

Plant breeding for immunity and performance

 
296-303 1064
Abstract

A total of 57 introgression lines and 11 cultivars of spring bread wheat developed by All-Russian Institute of Plant Protection and cultivated in the Volga Region were analyzed. The lines were obtained with the participation of CIMMYT synthetics, durum wheat cultivars, direct crossing with Agropyron elongatum (CI-7-57) and have introgressions from related species of bread wheat, namely translocations from Ag. elongatum (7DS-7DL-7Ae#1L), Aegilops speltoides (2D-2S), Ae. ventricosum (2AL-2AS-2MV#1), Secale cereale (1BL-1R#1S), 6Agi (6D) substitution from Ag. intermedium and triticale Satu. Cultivars and lines were assessed for resistance to Saratov, Lysogorsk, Derbent and Omsk stem rust pathogen populations (Puccinia graminis f. sp. tritici), and analyzed for the presence of the known Sr resistance genes using molecular markers. The analysis of the cultivars’ and lines’ resistance to the Saratov pathogen population in the field, as well as to Omsk, Derbent and Lysogorsk populations at the seedling stage, showed the loss of efficiency of the Sr25 and Sr6Agi genes. The Sr31 gene remained effective. Thirty one wheat lines out of 57 (54.4 % of samples) were resistant to all pathogen populations taken into analysis. The Sr31/Lr26, Sr25/Lr19, Sr28, Sr57/Lr34 and Sr38/Lr37 genes were identified in the introgression lines. The Sr31/Lr26 gene was identified in 19 lines (33.3 % of samples). All lines carrying the 1RS.1BL translocation (Sr31/Lr26) were resistant to all pathogen populations taken into analysis. The Sr25/Lr19 gene was identified in 49 lines (86 %). The gene combination Sr31/Lr26+ Sr25/Lr19 was identified in 15 lines (26.3 %). The gene combinations Sr38/Lr37+Sr25/Lr19, Sr57/Lr34+Sr25/Lr19 and Sr31/Lr26+Sr25/Lr19+Sr28 were identified in 3 introgression lines. These three lines were characterized by resistance to the pathogen populations studied in this work. The Sr2, Sr24, Sr26, Sr32, Sr36 and Sr39 genes were not detected in the analyzed wheat lines.

 
304-311 1325
Abstract
Potato crop is particularly affected by virus diseases, and potato virus Y (PVY) currently considered the most important pathogen distributed worldwide as a diversity of strains. Wild and cultivated tuber-bearing species of the genus Solanum L., stored in the VIR collection, are used as the initial material in creation domestic potato varieties (Solanum tuberosum L.) resistant to virus diseases. The preservation and rational utilization of the potato collection is based on regular phytosanitary monitoring, including quarantine objects, foremost PSTVd (potato spindle tuber viroid). The aim of the work is to examine plants of tuber-bearing Solanum species in the field gene bank of VIR for the presence of PSTVd and PVX (potato virus X), PVS (potato virus S), PVM (potato virus M) and PVY, which are the most common viruses on potatoes in the North-West District of Russia. We examined clonal plants of 137 genotypes representing 31 species of the section Petota of the genus Solanum L. A diagnostic was carried out using ELISA, RT-PCR and indicator plants. No PSTVd was found in the studied plants, but a plural infestation by mosaic viruses was detected, more than half of the tested clones are infected with two or more viruses. In the studied samples, only 17 genotypes (12 %) are not infected by PVX, PVS, PVM and PVY according to the ELISA test. There are statistically significant differences in the virus infestation of Solanum species with different origins, according to Pearson’s chi-squared test. Among the studied genotypes of wild relatives of potatoes, the proportion of those affected by PVY was significantly higher in the South American than in the North American species (χ2 = 4.56, p = 0.03); the proportion of genotypes affected by PVХ was significantly higher in the North American species (χ2 = 8.81, p = 0.003), the critical value was χ2 = 3.841. PVY strains were identified by multiplex RT-PCR in 37 genotypes of Solanum spp. We found that 27 genotypes are infected by a common PVYO strain, two genotypes are infected by PVYNW (A) and PVYNW (B) strains, respectively, seven genotypes are infected by a mixture of PVYO +PVYNW (A) strains, and one is infected by a mixture of PVYO +PVYNTN-NW (SYRI)+SYRIII strains. The recombinant strains of PVY are detected in the North-West District of Russia for the first time. Coherency of the results of PVY strains detection by various (immunological, molecular and biological) methods is discussed.
 
312-319 772
Abstract
The development of highly efficient technologies in genomics, transcriptomics, proteomics and metabolomics, as well as new technologies in agriculture has led to an “information explosion” in plant biology and crop production, including potato production. Only a small part of the information reaches formalized databases (for example, Uniprot, NCBI Gene, BioGRID, IntAct, etc.). One of the main sources of reliable biological data is the scientific literature. The well-known PubMed database contains more than 18 thousand abstracts of articles on potato. The effective use of knowledge presented in such a number of non-formalized documents in natural language requires the use of modern intellectual methods of analysis. However, in the literature, there is no evidence of a widespread use of intelligent methods for automatically extracting knowledge from scientific publications on cultures such as potatoes. Earlier we developed the SOLANUM TUBEROSUM knowledge base (http://www-bionet.sysbio.cytogen. ru/and/plant/). Integrated into the knowledge base information about the molecular genetic mechanisms underlying the selection of significant traits helps to accelerate the identification of candidate genes for the breeding characteristics of potatoes and the development of diagnostic markers for breeding. The article searches for new potential participants of the molecular genetic mechanisms of resistance to adverse factors in plants. Prioritizing candidate genes has shown that the PHYA, GF14, CNIH1, RCI1A, ABI5, CPK1, RGS1, NHL3, GRF8, and CYP21-4 genes are the most promising for further testing of their relationships with resistance to adverse factors. As a result of the analysis, it was shown that the molecular genetic relationships responsible for the formation of significant agricultural traits are complex and include many direct and indirect interactions. The construction of associative gene networks and their analysis using the SOLANUM TUBEROSUM knowledge base is the basis for searching for target genes for targeted mutagenesis and marker-oriented selection of potato varieties with valuable agricultural characteristics.
 
320-327 916
Abstract

The purpose of this work was to evaluate the phenotypic variability of grain quality indicators and to identify the set of the most informative indicators for the selection of different use varieties of winter rye. The research was carried out in Tatar Scientific Research Institute of Agriculture – Subdivision of the “Kazan Scientific Center of Russian Academy of Sciences” in 2001–2015 on 15 varieties of winter rye. Twenty parameters defining quality of grain and raw value were estimated: technological indicators (thousand grain mass, full-scale weight and grain uniformity), parameters preharvest sprouting (falling number, rate of amylogram, temperature of peak of starch gelatinization), kinematic water extract viscosity (WEV) of grain meal, baking properties (organoleptic assessment of trial baking bread). The greatest influence of genotype was found on WEV (34.8 %) and protein content (27.8 %). These features should be primarily the subject of phenotypic evaluation in the breeding process. Phenotypic variability of criteria of carbohydrate-amylase complex, α-amylases activity and technological parameters was determined predominantly (68.6…82.5 %) by environmental factors. There was no significant relationship between falling number and protein content. The falling number correlated with the rate of amylogram and the temperature of gelatinization. Positive conjugation of the average power of WEV with the rate of amylogram and falling number was found. On the basis of a prolonged phenotypic evaluation using principal component analysis we have optimized the analyzed indicators of quality properties of winter rye grain. For breeding evaluation of winter rye it is proposed to use four integral indi cators having the greatest weight load: protein content, falling number, water extract viscosity and thousand grain mass. This complex of features will provide objectivity and completeness of the evaluation of the breeding material. It was shown that the kinematic viscosity of the water extract should become an important selection index, both for determining the baking qualities of rye, and for revealing the fodder grain advantages.

Microbial genetics and selection

 
328-336 1058
Abstract

Genus Trichoderma strains as the natural plant residues’ biodestructors, highly active antagonists of soil phytopathogens and phytoregulators with the widest range of optimum conditions for their development, are widely used in biologics development. Of particular importance in Russia’s northern regions, especially in winter crop cultivation, is the ability of a microorganism’s strain used in agro-technologies to maintain viability and target biological activity at low temperatures. In this connection, this work purpose is to select a psychrotolerant strain of T. asperellum for the rapid crop residues’ polymer utilization and soil enhancement at low temperature, as well as to evaluate its activity under laboratory and field conditions. In the work process, the following tasks were addressed: selecting psychrotolerant strains of T. asperellum with high cellulolytic activity; further controlled breeding of psychrophilic strains capable of rapid growth, active colonization of plant substrates and high sporulation at 4–8 °C; evaluating the target activity of the selected psychrophilic strain as a cellulolytic as well as antagonistic activity against cereal pathogens; obtaining laboratory samples of bioformulations by deep-surface cultivation on non-sterile peat and multirecycled wastes from the edible mushrooms production and assessing their efficacy in field small-plot trials. The methods for inoculum cultivation, sporulation capacity determination, modified wet chamber, estimating antagonistic activity and biologics’ quality, field small-plot trials management, quantitative estimates of biomass losses, cellulose and lignin content were used in the work. The active psychrophilic strain for the rapid crop residues’ polymer utilization and soil enhancement controlled breeding was selected during a four-step screening of 29 T. asperellum strains from All-Russian Research Institute of Plant Protection (VIZR) State Microorganisms’ Collection with high cellulolytic and antagonistic activities. In terms of linear growth rate, antagonistic and hyperparasitic activities at 4–8 °С, a high rate of wheat and maize stubble residues’ colonization, a perspective psychrophilic strain G-034 of T. asperellum was selected for developing the laboratory samples of biologics and for running field trials. In small-plot trials, the active maize crop residues’ decomposition under the T. asperellum G-034 influence was revealed, resulting in the complete loss of plant intact state in 12 months due to more than 80 % cellulose and 20 % lignin biodestruction. The maximum loss of maize crop residues biomass for 12 months was more than 70 %. The T. asperellum strain G-034 was active after field hibernation in an amount of ×104 cfu/g, resulting in a titer increase with seasonal temperature rising and the trophic base bioavailability growth.

 
337-342 1122
Abstract

Viruses can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. When studying samples containing viruses, one confronts an unavoidable question of the quantitative determination of viral particles in the sample. One of the simplest and efficient approaches to quantitative determination of viral particles in preparation includes the use of electron microscopy; however, a high detection threshold is a significant limitation of this method (107 particles per ml). Usually, such sensitivity is insufficient and can result in error diagnosis. This study aims to develop a method making it possible to detect the number of viral particles more precisely and work with samples in which the concentration of particles is lower than 107/ml. The method includes a concentration of viral particles on the polyethersulfone membrane applied in centrifugal concentrators and subsequent calculation using an electron microscope. We selected env-pseudoviruses using a lentiviral system making it possible to obtain standardized samples of virus-like particles that are safer than a live virus. Suspension of viral particles (a volume of 20 ml) was placed into the centrifugal concentrator and centrifuged. After that, we took a membrane out of the centrifugal concentrator and evaluated the number of particles on the ultrathin section using an electron microscope. The number of viral particles on the whole surface of the filter (a square of 4 сm2) was 4×107 virions, the initial concentration of pseudoviruses in the sample was 2×106 per 1 ml (4×107 particles per 20 ml). As a result, the developed method enables one to evade the major disadvantage of quantitative determination of viruses using electron microscopy regarding a high detection threshold (concentration of particles 107/ml). Furthermore, the centrifugal concentrator makes it possible to sequentially drift a considerable volume of the suspension through the filter resulting in enhancement of test sensitivity. The developed approach results in increased sensitivity, accuracy, and reproducibility of quantitative analysis of various samples containing animal, plant or human viruses using electron microscopy.

Animal genetics

 
343-354 2028
Abstract

The color of plumage in birds is an important feature, often determining descent to a particular species or breed. It serves as a key factor in the interaction of birds with each other due to their well-developed visual perception of the surrounding world. In poultry including chickens, the color of the plumage can be treated as a genetic marker, useful for identifying breeds, populations and breeding groups with their specific traits. The origin of diverse color plumage is the result of two interrelated physical processes, chemical and optical, due to which pigment and structural colors in the color are formed. The pigment melanin, which is presented in two forms, eumelanin and pheomelanin, is widely spread in birds. The basis for the formation of melanin is the aromatic amino acid tyrosine. The process of melano-genesis involves many loci, part of the complex expression of plumage color genes. In birds, the solid black color locus encodes the melanocortin 1 receptor (MC1R), mutations in which lead to a change in receptor activation and form different variants of the E locus. Using the GWAS analysis, possible genes affecting the formation of color in chickens were detected. The biosynthesis and types of melanin are affected by the activity of the enzyme tyrosine, and mutations in the tyrosinase gene (TYR) cause albinism in different species. The formation mechanism of brown, silver, gold, lavender and a number of other shades is determined by the influence on the work of the MC1R genes and TYR specific modifier genes. Thus, locus I currently associated with the PMEL17 gene inhibits the expression of eumelanin, and the MLPH gene affects tyrosinase function. Research on the mechanisms of formation of the secondary coloring of plumage in chickens is being actively conducted nowadays. The formation of a marble feather pattern is associated with the mutation of the endothelin B2 receptor (EDNRB2), in the coding part of the gene of which a polymorphism is found associated with the mo locus. The molecular base that causes the feather banding (locus B and autosomal recessive banding) is identified. Today, only some genes that determine the color of the plumage of chickens are studied and described. Different genes can produce similar plumage patterns, and different phenotypes can be determined by the polymorphism of a single gene. Using molecular methods, you can more accurately identify these differences. This overview shows the nature of melanin coloration in birds using the example of chickens of various breeds and also attempts to systematize knowledge about the molecular-genetic mechanisms of the appearance of various types of coloration.

Animal genetics

 
355-361 968
Abstract

Hybridization of domestic animal breeds with their wild relatives is a promising method for increasing the genetic diversity of farm animals. Resource populations derived from the hybridization of various breeds of domestic sheep with mouflon and argali are an important source of breeding material. The karyotypes of argali and domestic sheep differ for a Robertsonian translocation, which occurred in the common ancestor of mouflon and domestic sheep (Ovis aries) due to the centric fusion of chromosomes 5 and 11 of the argali (O. ammon) into chromosome 3 of sheep. It is known that heterozygosity for translocation can lead to synapsis, recombination and chromosome segregation abnormalities in meiosis. Meiosis in the heterozygotes for translocation that distinguishes the karyotypes of sheep and argali has not yet been studied. We examined synapsis, recombination, and epigenetic modification of chromosomes involved in this rearrangement in heterozygous rams using immunolocalization of key proteins of meiosis. In the majority of cells, we observed complete synapsis between the sheep metacentric chromosome and two argali acrocentric chromosomes with the formation of a trivalent. In a small proportion of cells at the early pachytene stage we observed delayed synapsis in pericentromeric regions of the trivalent. Unpaired sites were subjected to epigenetic modification, namely histone H2A.X phosphorylation. However, by the end of the pachytene, these abnormalities had been completely eliminated. Asynapsis was replaced by a nonhomologous synapsis between the centromeric regions of the acrocentric chromosomes. By the end of the pachytene, the γH2A.X signal had been preserved only at the XY bivalent and was absent from the trivalent. The translocation trivalent did not differ from the normal bivalents of metacentric chromosomes for the number and distribution of recombination sites as well as for the degree of centromeric and crossover interference. Thus, we found that heterozygosity for the domestic sheep chromosome 3 and argali chromosomes 5 and 11 does not cause significant alterations in key processes of prophase I meiosis and, therefore, should not lead to a decrease in fertility of the offspring from interspecific sheep hybridization.

Ecological genetics

 
362-369 869
Abstract

The Eurasian wigeon (Mareca penelope) is one of the most numerous migrant species of waterfowl in the Palearctic. Annually, significant part of the world’s wigeon population makes seasonal flights over distances from tens to thousands or more kilometers. According to different estimates based on banding data, five geographic populations of the species were described in the Palearctic. However, distinct borders between the populations have not been identified. At the same time, no phylogeographic studies have been carried out for the complete native range of wigeon so far. In addition to the fundamental importance of such a study, knowledge of the genetic structure of populations is necessary for the development of measures to increase the number of and preserve this valuable game species. The aim of our work was a phylogeographic analysis of the wigeon across its vast native range in the Palearctic including ducks wintering in North America. We examined genetic diversity and differentiation of wigeon populations identified with banding data, phylogenetic relationships of mtDNA haplotypes and demographic history of populations and species as a whole by sequencing a 661 base-pair 5’-fragment of the mitochondrial control region from 195 individual ducks collected throughout the Palearctic and Nearctic. Genetic diversity was high in all studied populations. A reconstruction of haplotypes phylogeny revealed the absence of geographic structure in the data. Nonetheless, analysis of molecular variance (AMOVA) identified two groups of populations: EuropeanSiberian and East Asian. The former included wigeons from Europe, Siberia and the Atlantic coast of North America, and the latter comprised ducks from Russian Far East, Kamchatka Peninsula, Chukotka Autonomous District, the Aleutian Islands, Alaska, and the Pacific coast of North America.

 
370-374 686
Abstract

Several different mitochondrial clades have been found in natural populations of Drosophila melanogaster. Most often, the difference is in single nucleotide substitutions, some of which are conservative. Some clades are rare, and others dominate. It has been reported that clade III dominates over clades V and VI in seven populations of D. melanogaster. We compared D. melanogaster strains with different mitotypes by locomotor activity (using TriKinetics Drosophila Activity Monitor), energy expenditure (by indirect calorimetry, based on measuring oxygen consumption) and life span (under extreme conditions at 29 °C). The nuclear genomes of these strains were aligned for several generations by backcrosses. According to our data, individuals with the mitotype from clade III had a higher level of locomotor activity and longer life span. In terms of energy expenditure, the strains studied did not differ. However, the same level of energy expenditure may be differently distributed between the state of activity and the state of rest or sleep. If the energy expenditure during the sleep in flies with different locomotor activity is the same, then an individual with the same overall energy expenditure can move a greater distance or be active longer. This can be interpreted as an advantage of the strain with the mitotype from clade III compared to the other two mitotypes studied. If individuals have different energy expenditure values at rest, the strains with lower energy expenditure at rest spend less energy during forced inactivity. In this case, the mitotype from clade III should also be advantageous. What nucleotide substitutions in the mitotype from clade III can provide an adaptive advantage is not clear yet. We assume that individuals with widespread clade М(III) may have adaptive advantages compared to other mitotypes due to their greater locomotor activity even with the same energy expenditure. Further studies are required, for mitotypes are polymorphic for single nucleotide polymorphism not only between but also within the clades.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)